Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Murrugarra, D., (2005). Anillo de cobordismo MU*(pt) [Tesis, Universidad Nacional Mayor de San Marcos]. https://hdl.handle.net/20.500.12672/1254
Murrugarra, D., Anillo de cobordismo MU*(pt) [Tesis]. PE: Universidad Nacional Mayor de San Marcos; 2005. https://hdl.handle.net/20.500.12672/1254
@misc{renati/483884,
title = "Anillo de cobordismo MU*(pt)",
author = "Murrugarra Tomairo, David Manuel",
publisher = "Universidad Nacional Mayor de San Marcos",
year = "2005"
}
Título: Anillo de cobordismo MU*(pt)
Autor(es): Murrugarra Tomairo, David Manuel
Asesor(es): García Armas, Agripino
Palabras clave: Sucesión espectral de Adams; Anillos (Algebra); Cobordismo, Teoría de
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.00
Fecha de publicación: 2005
Institución: Universidad Nacional Mayor de San Marcos
Resumen: El objetivo principal de la presente tesis es estudiar la estructura del anillo de Cobordismo Complejo MU*(pt). Milnor y Novikov fueron los primeros en mostrar que este es un anillo polinomial sobre generadores de grado par sobre Z. Este cálculo se realiza utilizando la sucesión espectral de Adams sobre una teoría de homología generalizada. La exposición de este teorema ocupa la parte final de este trabajo. En la primera parte se presenta el teorema de Adams sobre la convergencia de su sucesión espectral. En la segunda parte, se describe el espectro de Thom y la teoría de homología generalizada asociada a este espectro, que en este caso viene a ser el Cobordismo Complejo. También se describe de manera breve la estructura del Álgebra de Steenrod y su dual, que se utilizará al momento de calcular la estructura del anillo de homología H* (MU; Zp). Al final se adjunta un apéndice sobre álgebras y algebroides de Hopf, que incluye algunos isomorfismos de cambio de anillos.
-- The main objective of the present thesis is to study the structure of the Complex Cobordism Ring MU*(pt). Milnor y Novikov first accomplished this, and they(independently) showed that it is a polynomial ring over Z on generator of every even degree. It is achieved by using the Adams Spectral Sequence over a generalized theory. This theorem is expounded at the end of this work. In the first part, I present the theorem about the convergence of the Adams spectral sequence. In the second, I describe the Thom Spectrum and the generalized homology theory associated to this spectrum, in this case it is the Complex Cobordism. I also describe quickly the Steenrod Algebra and its dual, which will be used when we determine the structure of singular homology ring H * (MU; Zp). Finally, I attach an appendix about Hopf algebroides and Hopf algebras, which contains some change of ring isomorphism.
-- The main objective of the present thesis is to study the structure of the Complex Cobordism Ring MU*(pt). Milnor y Novikov first accomplished this, and they(independently) showed that it is a polynomial ring over Z on generator of every even degree. It is achieved by using the Adams Spectral Sequence over a generalized theory. This theorem is expounded at the end of this work. In the first part, I present the theorem about the convergence of the Adams spectral sequence. In the second, I describe the Thom Spectrum and the generalized homology theory associated to this spectrum, in this case it is the Complex Cobordism. I also describe quickly the Steenrod Algebra and its dual, which will be used when we determine the structure of singular homology ring H * (MU; Zp). Finally, I attach an appendix about Hopf algebroides and Hopf algebras, which contains some change of ring isomorphism.
Enlace al repositorio: https://hdl.handle.net/20.500.12672/1254
Disciplina académico-profesional: Matemática
Institución que otorga el grado o título: Universidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Escuela Académico Profesional de Matemática
Grado o título: Licenciado en Matemática
Fecha de registro: 20-ago-2013
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons