Buscar en Google Scholar
Título: Operadores de control admisibles para sistemas dinámicos lineales en dimensión infinita
Asesor(es): Cabanillas Zannini, Víctor Rafael
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.01
Fecha de publicación: 2018
Institución: Universidad Nacional Mayor de San Marcos
Resumen: Presenta un estudio de ciertas ecuaciones diferenciales lineales sobre espacios de Hilbert. Estas ecuaciones son sistemas dinámicos lineales en dimesión infinita descritas por z(t) = Az(t) + Bu(t), donde A es el generador infinitesimalo de un semigrupo T, B es un operador no acotado y u es una función de entrada. Prueba la existencia y unicidad de soluciones de la ecuación diferencial anterior y continua investigando las propiedades que hacen de B un operador de control admisible para el semigrupo T. Se obtiene bajo la admisibilidad del operador B una mejor localización de la solución y luego, con hipótesis débiles sobre la función de entrada u, se obtiene un resultado de regularidad de la solución.
Nota: Publicación a texto completo no autorizada por el autor
Disciplina académico-profesional: Matemática
Institución que otorga el grado o título: Universidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Escuela Profesional de Matemática
Grado o título: Licenciado en Matemática
Jurado: Benazic Tomé, Renato Mario; Vera Saravia, Edgar Diógenes
Fecha de registro: 30-oct-2018



IMPORTANTE
La información contenida en este registro es de entera responsabilidad de la universidad, institución o escuela de educación superior que administra el repositorio académico digital donde se encuentra el trabajo de investigación y/o proyecto, los cuales son conducentes a optar títulos profesionales y grados académicos. SUNEDU no se hace responsable por los contenidos accesibles a través del Registro Nacional de Trabajos de Investigación – RENATI.