Citas bibligráficas
Solano, U., Ganoza, D. (2004). Un Algoritmo de búsqueda adaptativa aleatoria y golosa para la resolución del problema de cortes [Tesis, Universidad Nacional Mayor de San Marcos]. https://hdl.handle.net/20.500.12672/2627
Solano, U., Ganoza, D. Un Algoritmo de búsqueda adaptativa aleatoria y golosa para la resolución del problema de cortes [Tesis]. PE: Universidad Nacional Mayor de San Marcos; 2004. https://hdl.handle.net/20.500.12672/2627
@misc{renati/479361,
title = "Un Algoritmo de búsqueda adaptativa aleatoria y golosa para la resolución del problema de cortes",
author = "Ganoza Salazar, Dante",
publisher = "Universidad Nacional Mayor de San Marcos",
year = "2004"
}
Given a group of lineal requirements and a limitless number of metal bars (or another material) of standard size, with more dimension to that of the requirements. The Cutting Stock Problem consists on carrying out courts on the bars of standard size, in such a way that all the requirements are obtained with the smallest number of bars of standard size and the minor waste possible. The problem is NP-hard, and it presents several applications in the different sectors of the industry, such as the lumberman, metal, plastic, etc. The present Thesis shows a Procedure of Random Search, Adaptive and Greedy to solve the Cutting Stock Problem. Carried out numeric experiments of the algorithm proposed on 100 problem-tests, they report efficiency, average of 95.4% for a parameter of relaxation of 0.5 and 2000 iterations. The implemented software consists of 4 important modules: entrance of necessary data for the realization of the cuts, Greedy Algorithms FFD (First Fit Decreasing) and BFD (Best Fit Decreasing), GRASP and Reports.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons