Buscar en Google Scholar
Título: Ecuaciones y sistemas elípticos con crecimiento superlineal
Asesor(es): Pérez Salvatierra, Alfonso
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.00
Fecha de publicación: 2015
Institución: Universidad Nacional Mayor de San Marcos
Resumen: Estudia ecuaciones elípticas de la forma (P) −∆u + λu = f(x, u), en Ω, u ∈ H1 0 (Ω), donde Ω ⊂ R N (N ≥ 2) es un dominio limitado o Ω = R N y f : Ω × R → R es una función continua con condiciones de crecimiento subcrítico y crítico. También estudia sistemas de ecuaciones elípticas de la forma (S)    −∆u = f(x, u, v), em Ω, −∆v = g(x, u, v), em Ω, u, v ∈ H1 0 (Ω), donde Ω ⊂ R N (N ≥ 2) , f, g : Ω × R 2 → R son funciones continuas con condiciones de crecimiento subcrítico. Encuentra soluciones definidas en H1 0 (Ω) × H1 0 (Ω), para sistemas elípticos de tipo gradiente y de tipo hamiltoniano. Para la existencia de soluciones usa Métodos Varacionales, haciendo uso especial del Teorema del Paso de Montaña.
Disciplina académico-profesional: Matemática
Institución que otorga el grado o título: Universidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Escuela Académico Profesional de Matemática
Grado o título: Licenciado en Matemática
Fecha de registro: 2-jun-2017



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons