Buscar en Google Scholar
Título: Sobre el grupo de trenza para RP2
Asesor(es): García Armas, Agripino
Palabras clave: Teoría de trenza
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.00
Fecha de publicación: 2013
Institución: Universidad Nacional Mayor de San Marcos
Resumen: En este trabajo presentamos un estudio básico sobre el grupo de trenzas de Artin Bn. Introducimos los espacios de configuración Fn(M) y Fn(M)= n para una variedad M. En el caso M = R2, se mostrará que los grupos fundamentales de los espacios Fn(R2) y Fn(R2)= n son isomorfos a los grupos de trenzas puras Pn y grupo de trenzas de Artin Bn respectivamente. Motivados por este hecho, se define el grupo de trenzas de superficies Pn(M), Bn(M). Por último, concluimos haciendo un estudio a los grupos de trenza del plano proyectivo real Pn(RP2) y Bn(RP2). PALABRAS CLAVES: TRENZA ALGEBRAICA, DIAGRAMAS DE TRENZA, TRENZAS PURAS, ESPACIO DE CONFIGURACIÓN, PLANO PROYECTIVO REAL.

In this work we present a basic study about the group of Artin’s braids, Bn. We introduce the configuration spaces Fn(M) and Fn(M)= n for a manifold M. In the case where M = R2 we will show that the fundamental groups of the spaces Fn(R2) and Fn(R2)= n are isomorphic to the group of pure braids Pn and the group of braids of Artin Bn respectively. Motivated by that fact, we will define groups of braids of surfaces Pn(M) and Bn(M). Lastly, we will do a study of the braid groups of the real projective plane Pn(RP2) and Bn(RP2). KEY WORDS: ALGEBRAIC BRAIDS, BRAIDS DIAGRAMS, PURE BRAIDS, CONFIGURATION SPACES, REAL PROJECTIVE PLANE.
Disciplina académico-profesional: Matemática
Institución que otorga el grado o título: Universidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Escuela Académico Profesional de Matemática
Grado o título: Licenciada en Matemática
Fecha de registro: 8-ene-2014



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons