Citas bibligráficas
Alarcon, C., Arteaga, J. (2024). Propuesta de mejora en la gestión de inventario usando herramientas de Lean Warehousing y Machine Learning de una empresa mayorista de equipos de automatización e instrumentación. [Trabajo de Suficiencia Profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/674401
Alarcon, C., Arteaga, J. Propuesta de mejora en la gestión de inventario usando herramientas de Lean Warehousing y Machine Learning de una empresa mayorista de equipos de automatización e instrumentación. [Trabajo de Suficiencia Profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2024. http://hdl.handle.net/10757/674401
@misc{renati/418889,
title = "Propuesta de mejora en la gestión de inventario usando herramientas de Lean Warehousing y Machine Learning de una empresa mayorista de equipos de automatización e instrumentación.",
author = "Arteaga Ore, Jemima Keren",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2024"
}
The present research work presents a proposal for improving inventory management for a wholesale company of automation and instrumentation equipment, using Lean Warehousing and Machine Learning tools. The study focuses on solving stock obsolescence problems. The initial analysis highlights that the automation sector is booming, with projected growth of 5.9% in Latin America for the period 2024-2032. This growth presents challenges in inventory management. In Peru, only 34% of companies exhibit an advanced level of supply chain management, which highlights the need to improve existing practices. The company studied faces significant problems with inventory turnover and product obsolescence, impacting 4.5% of annual revenue. The solution includes the implementation of Machine Learning to improve demand forecasting and the application of Lean Warehousing. The Machine Learning model is used to predict demand based on historical data, reducing forecasting errors by 50%. Additionally, the 5S methodology was applied to improve the organization and efficiency of the supply chain, achieving a 30% reduction in obsolete codes and a 90% improvement in inventory record accuracy. Finally, the impacts of the proposed improvements were evaluated, demonstrating their feasibility. Additionally, impacts on operational efficiency, labor safety, and customer satisfaction were considered.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons