Citas bibligráficas
Coronel, C., Soto, M. (2023). Plan de migración de activos de información para mejorar la generación de reportes y calidad de datos utilizando Spark y DAMA-DMBOK en el proceso de preevaluación crediticia de pymes [Trabajo de Suficiencia Profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/671874
Coronel, C., Soto, M. Plan de migración de activos de información para mejorar la generación de reportes y calidad de datos utilizando Spark y DAMA-DMBOK en el proceso de preevaluación crediticia de pymes [Trabajo de Suficiencia Profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2023. http://hdl.handle.net/10757/671874
@misc{renati/413356,
title = "Plan de migración de activos de información para mejorar la generación de reportes y calidad de datos utilizando Spark y DAMA-DMBOK en el proceso de preevaluación crediticia de pymes",
author = "Soto Fernandez, Mayra Cristina",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2023"
}
This professional proficiency project introduces a financial company currently facing challenges in efficiently and rapidly processing and generating credit pre-evaluation reports for pymes. This is primarily due to the data stored in Oracle Data Warehouse and an on-premise Big Data environment, which exceeds the capacity of the technologies in place. Therefore, optimizing the execution times of computational processes and modernizing the organization's technological resources becomes essential. To address this issue, this project proposes an information asset migration plan to enhance report generation and data quality using the Big Data framework in the pyme credit pre-evaluation process. To validate that the proposed solution addresses the problem, a comparison of response times in report generation was conducted. The results obtained highlighted a significant decrease in the time required to carry out the pre-evaluation process for credit pre-evaluation for pymes., reducing it from 6 hours in a local Big Data environment to just 2 hours in the Azure Cloud environment. This represents a processing time reduction of over 50%. In conclusion, the migration led to a substantial improvement in operational efficiency and response speed for report generation.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons