Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Chirre, C., (2019). Bounds for the Riemann zeta-function via Fourier analysis [Instituto de Matemática Pura e Aplicada]. https://renati.sunedu.gob.pe/handle/sunedu/3335553
Chirre, C., Bounds for the Riemann zeta-function via Fourier analysis []. BR: Instituto de Matemática Pura e Aplicada; 2019. https://renati.sunedu.gob.pe/handle/sunedu/3335553
@phdthesis{renati/4091,
title = "Bounds for the Riemann zeta-function via Fourier analysis",
author = "Chirre Chávez, Carlos Andrés",
publisher = "Instituto de Matemática Pura e Aplicada",
year = "2019"
}
Title: Bounds for the Riemann zeta-function via Fourier analysis
Other Titles: Cotas para la función zeta de Riemann vía análisis de Fourier
Authors(s): Chirre Chávez, Carlos Andrés
Advisor(s): Carneiro, Emanuel
OCDE field: https://purl.org/pe-repo/ocde/ford#1.01.00
Issue Date: 2019
Institution: Instituto de Matemática Pura e Aplicada
Abstract: En esta tesis se establecen nuevos límites para algunos objetos
relacionados a la función zeta de Riemann y las L-funciones, bajo la
hipótesis de Riemann, haciendo uso de maquinaria fina de teoría
analítica de números, análisis harmónico y teoría de la aproximación. En
particular, hacemos uso de aproximaciones de banda limitada, la
reciente versión del método de resonancia dada por Kristian Seip y
Andrii Bondarenko, y programación semidefinida.
In this Ph.D. thesis, we establish new bounds for some objects related to the Riemann zeta-function and L-functions, under the Riemann hypothesis, making use of ne tools from analytic number theory, harmonic analysis, and approximation theory. Firstly, we use extremal bandlimited approximations to show bounds for the high moments of the argument of the Riemann zeta-function and for a family of L-functions. Secondly, we use the resonance method of Soundararajan, in the version of Bondarenko and Seip, to obtain large values for the high moments of the argument function. Finally, we improve some estimates related with the distribution of the zeros of the Riemann zeta-function, using the approach of pair correlation of Montgomery and tools from semide nite programming.
In this Ph.D. thesis, we establish new bounds for some objects related to the Riemann zeta-function and L-functions, under the Riemann hypothesis, making use of ne tools from analytic number theory, harmonic analysis, and approximation theory. Firstly, we use extremal bandlimited approximations to show bounds for the high moments of the argument of the Riemann zeta-function and for a family of L-functions. Secondly, we use the resonance method of Soundararajan, in the version of Bondarenko and Seip, to obtain large values for the high moments of the argument function. Finally, we improve some estimates related with the distribution of the zeros of the Riemann zeta-function, using the approach of pair correlation of Montgomery and tools from semide nite programming.
Link to repository: https://renati.sunedu.gob.pe/handle/sunedu/3335553
Discipline: Matemática
Grade or title grantor: Instituto de Matemática Pura e Aplicada
Grade or title: Doctor en Ciencias
Juror: Carneiro, Emanuel; Dimitrov, Dimitar; Moreira, Carlos Gustavo; Linares, Felipe; Belolipetsky, Mikhail; Milinovich, Micah
Register date: 19-Dec-2022
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ChirreChavezCA.pdf | Tesis | 898.67 kB | Adobe PDF | View/Open |
Autorizacion.pdf Restricted Access | Autorización del registro | 154.91 kB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License