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Abstract

In this Ph.D. thesis, we establish new bounds for some objects related to the Riemann
zeta-function and L-functions, under the Riemann hypothesis, making use of fine tools from
analytic number theory, harmonic analysis, and approximation theory. Firstly, we use ex-
tremal bandlimited approximations to show bounds for the high moments of the argument
of the Riemann zeta-function and for a family of L-functions. Secondly, we use the res-
onance method of Soundararajan, in the version of Bondarenko and Seip, to obtain large
values for the high moments of the argument function. Finally, we improve some estimates
related with the distribution of the zeros of the Riemann zeta-function, using the approach

of pair correlation of Montgomery and tools from semidefinite programming.
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Resumo

Nesta tese de Doutorado estabelecemos novos limites para alguns objetos relaciona-
dos a funcao zeta de Riemann e a uma classe de L-funcoes, sob a hipotese de Riemann,
fazendo uso de ferramentas finas da teoria analitica dos nimeros, analise harmonica e teoria
da aproximacgdao. Em primeiro lugar, usamos aproximacoes extremais de banda limitada
para mostrar cotas para os momentos do argumento da fungao zeta de Riemann e para uma
familia de L-func¢ées. Em segundo lugar, usamos o método de ressonancia de Soundarara-
jan, na versao de Bondarenko e Seip, para obter grandes valores para os momentos da
funcao argumento. Finalmente, melhoramos algumas estimativas relacionadas com a dis-
tribuicao dos zeros da fungao zeta de Riemann, usando a abordagem de correlagao de pares

de Montgomery e ferramentas de programacao semidefinida.
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Chapter 1

Introduction

This Ph.D. thesis is focused on the use of different techniques in analytic number theory,
harmonic analysis and approximation theory to establish new bounds for some objects
related to the Riemann zeta-function and a family of L-functions. The thesis compiles the

developments of the following research articles:

[A1l] Bounding S,(t) on the Riemann hypothesis (with E. Carneiro), Mathematical Pro-
ceedings of the Cambridge Philosophical Society, vol.164 (2018), 259-283.

[A2] Bandlimited approximations and estimates for the Riemann zeta-function (with E.

Carneiro and M. B. Milinovich), to appear in Publicacions Matematiques.

[A3] A note on entire L-functions, to appear in Bulletin of the Brazilian Mathematical

Society.

[A4] Extreme values for S,(o,t) near the critical line, to appear in Journal of Number

Theory.

[A5] Pair correlation estimates for the zeros of the zeta-function via semidefinite program-
ming (with F. Gongalves and D. de Laat), preprint, arXiv:1810.08843 (2018).

In Chapter 2 we find new upper and lower bounds for the high moments S, () of the
argument of the Riemann zeta-function on the critical line, under the Riemann hypothesis.
This extends the work of E. Carneiro, V. Chandee and M. B. Milinovich [16] for the case
n = 0 and n = 1 and substantially improves the previous result of T. Wakasa [91] for the
case n = 2. Our method uses special extremal functions of exponential type derived from
the Gaussian subordination framework of E. Carneiro, F. Littmann and J. Vaaler [25], and
an optimized interpolation argument. This chapter describes the article [A1] which is a joint
work with E. Carneiro (IMPA - Brazil).

In Chapter 3 we extend the results of Chapter 2 to the critical strip. In particular,
this recovers the results on the critical line and sharpens the error terms in such estimates.

New upper and lower bounds for the real part of the logarithmic derivative of the Riemann
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zeta-function in the critical strip are obtained. This chapter describes the article [A2] which

is a joint work with E. Carneiro and M. Milinovich (University of Mississippi - USA).

In Chapter 4 we discuss how to extend the results of the previous chapters to a general
family of L-functions in the framework of [56, Chapter 5], under the generalized Riemann
hypothesis. This also extends the work of E. Carneiro, V. Chandee and M. Milinovich [17]
and the work of E. Carneiro and R. Finder [20]. We also show estimates for the logarithm of
L-functions extending a result of E. Carneiro and V. Chandee [I4]. This chapter describes
the article [A3] and the final part of the article [A1].

In Chapter 5 we obtain new estimates for the extreme values of the argument of the
Riemann zeta-function and its high moments near the critical line assuming the Riemann
hypothesis. These results extend the work of A. Bondarenko and K. Seip [9]. The main
tools are certain convolution formulas and a version of the resonance method. This work
can be seen as the counterpart of the estimates in [A2] close to the critical line. In particular
we get some omega results for the functions S, (t). This chapter describes the results of the
article [A4].

In Chapter 6 we give improved asymptotic bounds for several quantities related to the
zeros of the Riemann zeta-function under H. Montgomery’s pair correlation approach [72].
Similar results are obtained for the derivative of the Riemann &-function and a family of
primitive Dirichlet L-functions. The key idea is to replace the usual bandlimited auxiliary
functions by the class of functions used in the linear programming bounds developed by H.
Cohn and N. Elkies [32] for the sphere packing problem. The advantage of this framework
is that it reduces the problems to certain convex optimization problems that can be solved
numerically via semidefinite programming. This chapter describes the results of the article
[A5] which is a joint work with F. Gongalves (Universitdt Bonn - Germany) and D. de Laat
(MIT - USA).

1.1 Notation

Throughout this thesis, we use the classical notation for the usual elements in analytic

number theory and harmonic analysis. We consider the following agreements:
1. For s € C we write s = o + it, where ¢ and t are real numbers.

2. For f € L'(R) we denote by fA’ the Fourier transform of f, defined by
o= | f@ean
—00

3. For every sum over zeros the summands should be repeated according to the multi-

plicity of the zero.



Also, we consider the following:
a) Zso denotes the set of the integer numbers {0, 1,2, 3,4, ... }.
b) I'(s) denotes the Gamma function.

c) A(n) denotes the von Mangoldt function defined to be logp if n = p™ with p a prime

number and m > 1 an integer, and zero otherwise.

d) Ly denotes the Laguerre polynomial of degree k with parameter —1/2 defined by Ly (z) =
Y, () R
j=0\ n—j / 4l =

e) supp (f) denotes the set {z € Dom(f) : f(x) # 0}.

f) fi denotes the function defined by fi(z) = max{f(z),0}.

g) f=0(g) (or f « g) means |f(t)| < C|g(t)| for some constant C' > 0 and for ¢ sufficiently
large. In the subscript we indicate the parameters in which such constant C' may depend

on.

h) f = o(g) means that lim: o, f(t)/g(t) = 0.

i) f = 9Q4(g) means f(t) > Cg(t) for some constant C' > 0 and for some arbitrarily large

values of t.

j) f=9_(g) means f(t) < —C g(t) for some constant C' > 0 and for some arbitrarily large

values of t.
k) f=Q4:(g) means that f = Q,(¢g) and f =Q_(g).

1) f=Q(g) means that lim;_,o, f(t)/g(t) # 0.



Chapter 2

The Riemann zeta-function and

bandlimited approximations I

This chapter is comprised of the paper [A1]. Our main goal here is to improve, under the
Riemann hypothesis, the known upper and lower bounds for the high moments {S, (¢)},>2
of the argument of the Riemann zeta-function on the critical line, extending the work of
Carneiro, Chandee and Milinovich [16] for S(¢) and Si(t). Our argument relies on the
use of certain extremal majorants and minorants of exponential type derived from the
Gaussian subordination framework of Carneiro, Littmann and Vaaler [25] and an optimized

interpolation argument.

2.1 The Riemann zeta-function

The Riemann zeta-function ((s) is the function defined by
o1
((s) = 7;1 s

for Res > 1. Using the fundamental theorem of arithmetic, one clearly sees the first

connection of the Riemann zeta-function with the prime numbers through the relation

)= J] (1—;>_1, (2.1.1)

p prime

where the product is over all prime numbers and is absolutely convergent for Re (s) > 1.

In 1859, Riemann [80] showed that ((s) has an analytic continuation to the complex

plane. In fact, the Riemann &-function defined by

1 s
(s)=5s(s—1)m =0 (%) ¢(s) (2.1.2)
is an entire function of order 1 and satisfies the functional equation £(s) = £(1—s). Riemann
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also showed a more deeper connection between the behavior of the function ((s) and the
distribution of the prime numbers. To be more especific, he showed an explicit formula that

expresses the number of primes less than a number z in terms of the zeros of ((s).

It is known that the Riemann zeta-function only has zeros in Res < 0 in each point
s = —2k with k € N. These are called the “trivial zeros” of ((s) and are exactly the poles
of the Gamma function that appears in . By the Euler product , the Riemann
zeta-function has no zeros in Re(s) > 1. Therefore, the “non-trivial zeros” of ((s) lie in
the critical strip 0 < Res < 1. Moreover, using we see that the non-trivial zeros
of {(s) are the zeros of £(s). It is also known that ((s) has a countably infinite number of
non-trivial zeros and that they are symmetric with respect to the real-axis and the critical
line Re s = % In the course of his paper [80], Riemann says that he considers it “very likely”
that the non-trivial zeros have real part equal to %, but that he has been unable to prove
that this is true. This harmless affirmation is one of the most important open problems in

pure mathematics.

1

Conjecture 2.1 (Riemann hypothesis - 1859). All non-trivial zeros of ((s) have Res = 5.

The experience of Riemann’s successors with the Riemann hypothesis has been the same
as Riemann’s—they also consider its truth “very likely” and they also have been unable to
prove it. Hilbert included the problem of proving the Riemann hypothesis in his list [52] of the
most important unsolved problems which confronted mathematics in 1900, and the attempt
to solve this problem has occupied the best efforts of many of the best mathematicians of
the twentieth century. It is now unquestionably the most celebrated problem in mathematics
and it continues to attract the attention of the best mathematicians, not only because it has
gone unsolved for so long but also because it appears tantalizingly vulnerable and because its

solution would probably bring to light new techniques of far-reaching importanceE

For an overview of the theory of the Riemann zeta-function, we refer the reader to the
classic books by Davenport [36], Edwards [37], Ivic [54, [55], Iwaniec and Kowalski [56],
Montgomery and Vaughan [74], and Titchmarsh [86] as well as the references contained

within these sources.

2.2 Behavior on the critical line: 5,(t)

Let N(t) denote the number of non-trivial zeros p = 8 + iy of ((s) with 0 < v < ¢,
counting multiplicities (zeros with ordinate v = ¢ are counted with weight %) In the study
of the distribution of the zeros of {(s), Riemann [80] stated the asymptotic formula for N(¢),
which was later proved by von Mangoldt [70] in 1895. For ¢ > 2 we have

t t t 7 1
N(t) = —log - — -+ o +5(1)+0 <t> : (2:2.1)

'H. M. Edwards, Riemann’s zeta-function, Pag. 6.
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where S(t) is defined as follows: If ¢ is not the ordinate of a zero of ((s) we define
S(t) = Larg (5 +it),

where the argument is obtained by a continuous variation along straight line segments
joining the points 2, 2 + it and % + it, with the convention that arg((2) = 0. If ¢ is the

ordinate of a zero of ((s) we define
S(t) =13 liH(l) {St+e)+S(t—e)}.
E—>

The function S(¢) has an intrinsic oscillating character and is naturally connected to
the distribution of the non-trivial zeros of ((s) via the relation (2.2.1)). Useful information
on the qualitative and quantitative behavior of S(¢) is encoded in its high moments S, (¢).
Setting Sy(t) = S(t) we define, for n > 1 and ¢ > 0,

Si(t) = f: S () dr + 6, (2.2.9)

where 4,, are constants given by (see for instance [41} p.2])

(_1)k—1 0 [0 [Celloe)
(52]6,1 = ﬂfl J J f IOgK(UQ)‘ dO’o dJl dO’Qk,Q
5 YO2k-2 g2 JO1

forn =2k — 1, with k > 1, and

5 ( )k ) 1 r1 1 rl d (_1)k71
o = (—1)"" J j f J dog doy ... dogp 1 = ————+
% Ook—1 oo Joq (Qk)‘ - 22k

for n = 2k, with £k > 1.

Fujii [41] established some interesting formulas between S, () and the non-trivial zeros

of (s). Such formulas allowed him to recast the Riemann hypothesis (RH) as follows:

Theorem 2.2 (Fujii, 2001). The following statement is equivalent to the Riemann hypoth-

esis: for any integer n > 3, we have Sy (t) = o(t"2), as t — o0.

Unconditionally, there are known bounds for the functions S, (¢). For the cases n = 0
and n = 1 we have the classical bounds S(t) = O(logt) and S1(t) = O(logt) (see for instance
[86]). For n > 2, Fujii [41, Theorem 2| established that

tn—l
Sn(t) = 0<1gt)

Under RH, Littlewood [64] (see also Selberg [83]) obtained improved estimates for Sy, (¢).
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In fact, the classical result of Littlewood [64, Theorem 11] states that, under RH,

logt
Sp(t) =0 | ——————— 2.2.3
for n = 0. The order of magnitude of (2.2.3)) has not been improved over the last ninety
years, and the efforts have hence been concentrated in optimizing the values of the implicit
constants. In the case n = 0, the best bound under RH is due to Carneiro, Chandee and
Milinovich [16] (see also [17]), who established that

S(1)] < (411 + 0(1)> 1og)1go ';t. (2.2.4)

This improved upon earlier works of Goldston and Gonek [46], Fujii [42] and Ramachandra
and Sankaranarayanan [79], who had obtained ([2.2.4) with constants C = 1/2, C = 0.67
and C = 1.12, respectively, replacing the constant C' = 1/4.

For n = 1 the current best bound under RH is also due to Carneiro, Chandee and
Milinovich [16], who showed that

T logt s logt
~ it Gagogip < 50 < (g +o0) fogrogip 229

This improved upon earlier works of Fujii [43], and Karatsuba and Korolév [58], who had
obtained ({2.2.5) with the pair of constants (C*,C™) = (0.32,0.51) and (C*,C™) = (40, 40),
respectively, replacing the pair (C*,C™) = (7/48,7/24).

For n > 2, under RH, it was recently established by Wakasa [91] that

logt

150(0)] < W+ 0(1)) opos e

(2.2.6)

with the constant W,, given by

1 1 " n! 1 1
Wn = 27n! {1—&(14—2)],;)(71—]')! <e+2j+132>
1 1(1+1) 1 1
)

+(n—kl) 1—%(14—%) n(n+1) 1—%(14—l

if n is odd, and

if n is even.



2.2.1 Main result
Here we extend the methods of [16] to significantly improve the bound (2.2.6]). Our main
result is the following.

Theorem 2.3. Assume the Riemann hypothesis. For n = 0 and t sufficiently large we have

logt
(loglog t)nt1”’

logt

- (Cy +0(1>)W < Su(t) < (CF +0(1)) (2.2.7)

where C* are positive constants given by:

e Forn =0,
1
Cy=-.
04
e Forn =4k + 1, with k € Z*,
_ C(n+1) + (@=2"")C¢(n+1)
Cn = W and Cn = 7T-2n+1 .

Forn =4k + 3, withke Z™,

- (1=-2")<¢(n+1) + Cn+1)

C” - T ontl and Cn = T.ontl’

o Forn =2 even,
_ _ 1/2
Ctr=0" = 2(CTJLrJrl + Cn+1) C;fl Cnfl
" " Ch1+Cpy

V2 [(=2m2) (1= 27 ¢(n) (n+2) 12
B T - 2n+1 (1 _ an) :

The terms o(1) in (2.2.7) are O(logloglogt/loglog t)E|

For n = 0 and n = 1 this is a restatement of the result of Carneiro, Chandee and
Milinovich [I6]. The novelty here are the cases n > 2. Observe that Cf ~ —or when

n is odd and large and CE ~ V2 \when n is even and large. We highlight the contrast

m.2n+l

between these exponentially decaying bounds and the previously known bounds (2.2.6) of
Wakasa [91] that verify

lim W, = ! = 0.3203696...

n—o0 2r (1-2(1+1))

€ &

?We remark that the implicit constants in the O—notation in our estimates (as well as in ([2.2.3)) are
allowed to depend on n.



’ n \ C, \ Cr W, \ W, /max{C, ,C,} ‘
2 0.0593564... | 0.0593564... | 0.6002288... | 10.1122762...
3 0.0188406... | 0.0215321... | 0.3426156... | 15.9118250...
4 0.0141490... | 0.0141490... | 0.3509932... | 24.8069103...
5 0.0050598... | 0.0049017... | 0.3254151... | 64.3131985...
6 0.0035192... | 0.0035192... | 0.3235655... | 91.9420229...
7 0.0012387... | 0.0012484... | 0.3216216... | 257.6130647...
8 0.0008792... | 0.0008792... | 0.3210078... | 365.0786196...
9 0.0003111... | 0.0003105... | 0.3206826... | 1030.6078264...
10 | 0.0002198... | 0.0002198... | 0.3205263... | 1458.2249832...

Table 2.1: Comparison for 2 < n < 10.

Table 2.1 puts in perspective the new bounds of our Theorem [2.3| and the previously known
bounds (2.2.6)) in the small cases 2 < n < 10. The last column reports the improvement

factor.

2.2.2 Strategy outline

Our approach is partly motivated (in the case of n odd) by the ideas of Goldston and
Gonek [46], Chandee and Soundararajan [29], and Carneiro, Chandee and Milinovich [16], on
the use of the Guinand-Weil explicit formula on special functions with compactly supported
Fourier transforms (drawn from [89], [27] and [22], 25], respectively) to bound objects related
to the Riemann zeta-function.

The strategy can be broadly divided into the following four main steps:

Step 1: Representation lemma.

The first step is to identify certain particular functions of a real variable naturally
connected to the high moments S,(t). For each n > 0 define a normalized function f, :

R — R as follows:

o If n =2m, for m € Z>¢, we define

f ( ) ( 1)m 2m t 1 me (_1)m—k 2m—2k—1 T (2 9 8)
x) = (—=1)"z"™ arctan | — | — — - . (2.2,
2m v) A 2%+ (2m + 1)(1 + 22)
o If n =2m+ 1, for m € Z>(, we define
fom+1(x) = ! (—1)™ g2+ arctan 1 + i ﬂx%‘_% (2.2.9)
mr 2m + 1 x = 2k+1 ' o

We show in Lemma below that, under RH, S,,(t) can be expressed in terms of the sum

of a translate of f,, over the ordinates of the non-trivial zeros of ((s). From the power series

9



representation (around the origin)

ee}
—1
arctanx = Z ( )

one can check that fo,,(z) <m |z|™ and fomi1(2) <m |2|72 as |z| — oo. This rather

innocent piece of information is absolutely crucial in our argument.

Step 2: Extremal functions.

Our tool to evaluate sums over the non-trivial zeros of ((s) is the Guinand-Weil explicit
formula. However, the functions f, defined above do not possess the required smoothness
to allow a direct evaluation. In fact, we have that f,, is of class C"~!(R) but not higher
(the n-th derivative of f,, is discontinuous at z = 0). Note also that fp is discontinuous at
the origin. Then, it will be convenient to replace f,, by one-sided entire approximations of
exponential type in a way that minimizes the L!(R)—error. This is the so called Beurling-
Selberg extremal problem in approximation theory. These special functions have been useful
in several classical applications in number theory (see for instance the excellent survey [89] by
J. D. Vaaler and some of the references therein) and have recently been used in connection
to the theory of the Riemann zeta-function in the works [14, [15] 16, 17, 201 29, [44], [46].
We shall see that the even functions fo,,11, for m € Zsq, fall under the scope of the
Gaussian subordination framework of [25]. This yields the desired existence and qualitative
description of the Beurling-Selberg extremal functions in these cases (Lemma below) and
ultimately leads to the bounds of Theorem [2.3] for n odd. When n is even, our argument
is subtler since the functions fs,, are odd. The Gaussian subordination framework for odd
functions [22] only allows us to solve the Beurling-Selberg problem for a class of functions
with a discontinuity at the origin. This is the case, for example, with the function fy(z) =
arctan(1/z) — z/(1 + x?), and this was explored in [I6] to show (2.2.4). For m > 1, the
functions fa,, are all odd and continuous, and the solution of the Beurling-Selberg problem
for these functions is quite a delicate issue and currently unknown. We are then forced to

take a very different path in this case.

Step 3: Guinand-Weil explicit formula and asymptotic analysis.

In the case of n odd, we bound S, (t) by applying the Guinand-Weil explicit formula
to the Beurling-Selberg majorants and optimizing the size of the support of the Fourier
transform. This is possible via a careful asymptotic analysis of all the terms that appear in

the explicit formula.

Step 4: Interpolation tools.

Having obtained the desired bounds for all odd n’s, we proceed with an interpolation

argument to obtain the estimate for the even n’s in between, exploring the smoothness of

10



Sp(t) via the mean value theorem. An optimal choice of the parameters involved in the

interpolation argument yields the desired bounds for the even n’s.

2.3 Representation lemma I

Our starting point is the following formula motivated by the work of Selberg [81].

Lemma 2.4. Assume the Riemann hypothesis. Forn =0 and t > 0 (t not coinciding with

the ordinate of a zero of ((s) when n = 0) we have

Su(t) = -+ Tm {Zn fo (0=1)" C(o+it) da}. (2.3.1)

7T TL' 1/2 C

Proof. This result is contained in the work of Fujii [41, Lemmas 1 and 2]. We provide here
a brief sketch of the proof. Let R,(t) be the expression on the right-hand side of (2.3.1).
The validity of the formula for n = 0 is clear. Proceeding by induction, let us assume
that the result holds for n = 0,1,2,...,m — 1. Differentiating under the integral sign and
using integration by parts one can check that R}, (t) = Ry—1(t) = Sm—1(t) (for m =1 we
may restrict ourselves to the case when ¢ does not coincide with the ordinate of a zero of
¢(s)). From it remains to show that lim, ,q+ Ry, (t) = dp, for m > 1. This follows by
integrating by parts m times and then taking the limit as ¢t — 07. O

The next result establishes the connection between S, and the functions f,, defined in

(2.2.8) - (2.2.9). In the proof of Theorem we shall only use the case of n odd, but we
state here the representation for n even as well, as a result of independent interest.

Lemma 2.5 (Representation lemma). For each n = 0 let f, : R — R be defined as in
(2.2.8) - (2.2.9). Assume the Riemann hypothesis. For t = 2 (and t not coinciding with an

ordinate of a zero of ((s) in the case n = 0) we have:

(i) If n = 2m, for m € Zxy, then

(—1

Som(t) = W(%K! Zfzm(t —7) + O(1). (2.3.2)
Y

(i) If n =2m + 1, for m € Zxq, then

SQm-‘rl (t) =

The above sums run over the ordinates of the non-trivial zeros p = % + iy of ¢(s).

11



Proof. We split the proof into two cases: n odd and n even.
Case 1. n odd: Write n = 2m + 1. It follows from Lemma [2.4] and integration by parts that

Somy1(t) = ! Im{(qmﬂfoo (o — ;)2m+1 ¢ = (o +it) do }

s 2m + 1) 1/2 C
B (_1)m+1 o) oma1 (!
_MRG{LH(U_%) <(0+zt)d }

(2.3.4)

—1)ym 0 - '
- 7(T(2Til)! Re {L/Q (=)™ log{(o +it) do’}

_1\m 3/2
) U (a_;)2m10g|<(a+it)|da}+0(1).

7T(2m)' 1/2

The idea is to replace the integrand by an absolutely convergent sum over the zeros of ((s)
and then integrate term-by-term. Using the Hadamard’s factorization formula (cf. [36)
Chapter 12]) for the Riemann &-function defined in (2.1.2)), we have

£(s) = €A+BSH <1 _ S>es/p7

P P

where p = (8 + iy runs over the non-trivial zeros of ((s), A € R and B = —3] Re(1/p).

Therefore, assuming the Riemann hypothesis, it follows that

(0= 37+ =\ "
=1:[< 1i(t_7)2 ) . (2.3.5)

&(o + it)
&3 +it)

Hence

o1 2
log |£(0 + it)| — log ’f —l—zt Zlog( 1+)(t _(; ) )

By Stirling’s formula for I'(s) (cf. [36, Chapter 10]) we obtain

+ (t—n)?
52+ (t—

log[¢(o +it)] = (3 — %) 10gt—leo ( )2> +0(1), (2.3.6)
'7
uniformly for 1/2 < 0 < 3/2 and t > 2. Inserting (2.3.6)) into 4)) yields

_1\m 3/2
Som1(t) = 75(21%)! (f (-5 (-9 da) log 1

1/2
_ﬂ 32 _l2mo 1+(t—’y)2
27 (2m)! Jl/2 g(g 3)" log <(J_§)2+ (t—7)2> do + O(1)
(=D™
= mlogt

12



(—1)7712[3/2(0_%)27711(%( 1j(t_7)2 2) do + O(1)

_ 27T(2m)' 5 J1/2 (O‘ _ §)2 + (t _ ’7)
B 27T((2_’rrlL)—T:2)' logt N 75?21332 ;f2m+1(t - ’7) + 0(1)7 (2.3.7)

where the function fa,,+1 is (momentarily) defined by

3/2 2
Jom+1(x) = ;J (0’ - %)Qm log ((U_l—I—ac> do, (2.3.8)

1/2 %)2 + a2

and the interchange between the sum and integral in (2.3.7)) is justified by monotone con-
vergence since all the terms involved are nonnegative. Starting from (2.3.8)), a change of
variables and the use of formula [50, 2.731] yield

Lo, 1+ 22
foms1(z) = 2[ o log <02+$2> do

0
log(1+2%) 1 (' ,, ) )
22m+1) 2 fo o""log(o” + 2%) do
log(1 + 2?) 1 2m+1 2, .2 2 o
= - 1 _1)Mm92mH 1 g1t <7>
22m+1)  2(2m+1) “ og(o” + %) + (—=1)"2x arctan ( —

m (_1)m—k
-9 Z $2m—2k0_2k+1:|

1 m+1, 2m+1 1 o (=)™ F ok
=—|[(-)""z arctan | — | + Z ——= .
2m + 1) v) ATkt

This shows that the two definitions (2.2.9) and (2.3.8]) agree, which completes the proof in

this case.

Case 2. n even: Write n = 2m. From Lemma [2.4] it follows that

Som(t) = ! Im {(ng JOO (o0 — %)2m C—/(a + it) da}

T 2m)! 1/2 ¢
(—1)m+ 3/2 Lam . (2.3.9)
- W Im {L/Z (U — 5) Z(U + it) da} +O0(1).

We again replace the integrand by an absolutely convergent sum over the non-trivial zeros
of ((s). Let s = o +it. If s is not a zero of ((s), then the partial fraction decomposition for
¢'(s)/¢(s) (cf. [36, Chapter 12]) and Stirling’s formula for I''(s)/T'(s) (cf. [36, Chapter 10])

imply that
¢, 1 1\ 1I'(s
t0=3(5+5) ar(3+1) o
g LN . (2.3.10)
“N(55) g (s) vow



uniformly for % <o < % and t > 2, where the sum runs over the non-trivial zeros p of {(s).

Assume that ¢ is not the ordinate of a zero of {(s). Then, from (2.3.9)), (2.3.10) and the
Riemann hypothesis, it follows that

_1\m 3/2 /
Som(t) = M J (o — %)Qm Im{c(a + zt)} do + O(1)

m(2m)! Jij2 ¢
B (_1)m+1 3/2 om CI ‘ CI r .
= o, 9 m{ G sin - S (¢ ar o0

_ =" 3/2 2m (t—"7) (t—7)
_W(Qm)!£/2 (‘7_%) Z{(U—;)Qﬁ-(t—’y)Q_l—i—(t—fy)?}da—i—o(l)

g [ f oo B (o i)
(0= 37+ =P

n@m)! Sy | (0 52+ (- L+ (t =)
‘@m+nzfﬁ—w%]+“”
_ g[g ymketd t_;frl% Ly (—=1)™(t — 7)2™ arctan <t—17>
‘@m+nzfﬁ—w%]+“”
— 75(_21%7; Z/szm(t —7) +0(1), (2.3.11)

where the interchange between the sum and the integral is justified by dominated conver-
gence since fo,(z) <, 2|72 as |z| — co. Finally, if m > 1, both sides can be extended

continuously when ¢ is the ordinate of a zero of ((s). O

Remark 2.6. Observe the introduction of a test point % + it in a couple of passages in the
proof above. This seemingly innocent object is actually quite important in dealing with the

convergence 1Ssues.

The sum of fo,+1(t — 7) over the non-trivial zeros in is too complicated to be
evaluated directly, mainly due to the fact that fa,,41 is only of class C*™(R). The key
idea to prove Theorem in this case is to replace the function fs,,41 in by an
appropriate majorant or minorant of exponential type (thus with a compactly supported
Fourier transform by the Paley-Wiener theorem). We then apply the following version of
the Guinand-Weil explicit formula which connects the zeros of the zeta-function and the

prime powers.

Lemma 2.7 (Guinand-Weil explicit formula). Let h(s) be analytic in the strip Im s| < & +¢
for some € > 0, and assume that |h(s)| « (1 + |s])~+%) for some 6 > 0 when |Res| — 0.
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Let h(w) be real-valued for real w. Then
1 o0 / .
pP—3 1 1 1~ 1 '/
—n(= —— ) = =h(0)1 — S e
;h< - ) h<2i>+h< Qi) 5 h(0)logm + — _ooh(u)ReF 1t ) du
1 A(n) [~ (logn ~ (—logn
— — h h
27 ;2 vn < < o )" 27 ’

where p = B + iy are the non-trivial zeros of ((s), I'/T" is the logarithmic derivative of the

Gamma function, and A(n) is the von Mangoldt function.

Proof. The proof of this lemma follows from [56, Theorem 5.12]. O

2.4 Extremal bandlimited approximations I

Recall that an entire function G : C — C is said to have exponential type 7 if

lim sup log|G(2)] G)] ST
|z| >0 |2
The celebrated Paley-Wiener theorem states that a function g € L?(R) has Fourier trans-
form supported in the interval [-A, A] if and only if it is equal almost everywhere to the
restriction to R of an entire function of exponential type 2w A. The term bandlimited is com-
monly used in the applied literature in reference to functions that have compactly supported
Fourier transforms.

The problem of finding one-sided approximations of real-valued functions by entire func-
tions of prescribed exponential type, seeking to minimize the L'(R)—error, is a classical
problem in approximation theory. This problem has its origins in the works of A. Beurl-
ing and A. Selberg, who constructed majorants and minorants of exponential type for the
signum function and characteristic functions of intervals, respectively. The survey [89]
by J. D. Vaaler is the classical reference on the subject, describing some of the histori-
cal milestones of the problem and presenting a number of interesting applications of such
special functions to analysis and number theory. In recent years there has been consid-
erable progress both in the constructive aspects and in the range of applications of such
extremal bandlimited approximations. For the constructive theory we highlight, for in-
stance, the works [22| 25 27 [51), 60, 66, [67, [68] in the one-dimensional theory and the works
[211, 23, 24, [49] [53] in the multi-dimensional and weighted theory. These allowed new appli-
cations in the theory of the Riemann zeta-function and general L-functions, for instance in
[14, [15] 16l 17, [18], 19, 20} 29, BT, 144, 406, [71].

The appropriate machinery for our purposes is the Gaussian subordination framework of
Carneiro, Littmann and Vaaler [25], a method that allows one to solve the Beurling-Selberg

extremal problem for a wide class of even functions. In particular, functions g : R — R of
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the form

g(x) = JOOO e dv(N), (2.4.1)

where v is a finite nonnegative Borel measure on (0, c0), fall under the scope of [25]. It turns
out that our functions fan,4+1 defined in (2.2.9)) are included in this class. We collect the
relevant properties for our purposes in the next lemma. This lemma is the generalization of

[16, Lemma 4] that considers the case m = 0.

Lemma 2.8 (Extremal functions for fo,,41). Let m = 0 be an integer and let A = 1 be a
real parameter. Let fomy1 be the real valued function defined in (2.2.9)), i.e.

1
S om+1

fom+1(2)

(_1)m+1332m+1 arctan l + i ﬂfgm—%
x = 2k+1

Then there are unique real entire functionﬂ Joms1in 2 C — C and 9;m+1A :C - C

satisfying the following properties:
(i) For x € R we have

Kom41
S 1422’

~ Komq
1+ 22

< ggm+1,A(x) < famt1(7) < g;m+17A($) (2.4.2)

for some positive constant Komy1 independent of A. Moreover, for any complex num-

ber z = x + iy we have

A2
+ 2 A
|91, (2)] <m me 1, (2.4.3)

(ii) The Fourier transforms of gZim—i-l,A’ denoted by §2im+1,A(£)7 are continuous functions

supported on the interval [—A, A] and satisfy

Trms1.a(8) <m 1 (2.4.4)
for all £ € [-A, A], where the implied constant is independent of A.

(iii) The L'—distances of g;—rmﬂ A to fomy1 are explicitly given by

[ s =, 200} a0

3/2 —27(c—1/2)A
:l o—1 am lo Lte do 2.4.5
3 g

A 1/2 1 + 6_27rA

and

f_oooo {9;m+1,A(1') — fom+1(2)} da

3Recall that a real entire function is an entire function whose restriction to R is real-valued.
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1 3/2 )2m | 1— 6—271'(0'—1/2)A
A iy

1
= o— 3 T ) do. (2.4.6)

Proof. For A > 1, we consider the nonnegative Borel measure va = va;,41,4 on (0, 00) given

b
Y 3/2 2 e~ A 0—1/2)2A% _ —mAA?
dvA)\:zf o— 4T do dX,
( ) 12 ( 2) 2\

and let FA = Fbp,41,A be the function

Fa(x) := J() e~ dva ().

Recall that

1 22 + A2 o0 o [ =™ 0=1/2)?A% _ —mAAZ
Log _ J oA A,
2 22 + (o0 — 1/2)2A2 0 2\

Multiplying both sides by (o — 1/2)?™ and integrating from o = 1/2 to o = 3/2 yields

1 3/2 1\2m 5132 +A2
- — L2
2L2 (0 =2) o | oo =i ayar )

3/2 oo —mA(0—1/2)2A2 _ _—7wAA?
_ f (0 — 1) emmre? (e ‘ ) d\ do
0

0 3/2 —mA(0—1/2)2A% _ _—mAA?
—mAz? 1\2m [ € €
= e o— = do dX
[ [ ()
= Fa(2),

where the interchange of the integrals is justified since the terms involved are all nonnegative.

It follows from ([2.3.8) that
fom+1(x) = Fa(Az). (2.4.7)

In particular, this shows that the measure va is finite on (0, 0) since

o0
1
dva(A) = FA(0) = fom+41(0) = —.
[, st = a0 = o 0) = g
By [23, Corollary 17], there is a unique extremal minorant Gy (z) = G,,, ., A(2) and

a unique extremal majorant G} (z) = G3,, .1 A(2) of exponential type 27 for Fa(x), and

these functions are given by

Gx(z) = (coswz>2{ i Fa(n—1%) N Fy(n—1) } (2.48)

ot d) o))
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and

: 2 ( o '
GA(2) = (Sm7:m> { Z (fA(Z;Q + Z (Zi(?) } (2.4.9)
Hence, the functions g, (2) = gy,,,,1 (%) and ga(z) = g;m+1,A(Z) defined by
ga(2) := GA(Az) and gL(z) := GL(Az) (2.4.10)

are the unique extremal functions of exponential type 27 A for fo,,+1. We claim that these
functions verify the conditions of Lemma

Part(i) We start by observing that

nd | P @) < ! (2.4.11)

1
« —_ .
[Fomi1(@)] <m 1+ a2 z|(1 + z2)

This follows from the fact that fa,,41 and fj,,,; are bounded functions with power series

representations

0 )k 1 0 2k)

d
Jemr(@ 2m +1 g 2k + om + a2k foma (@ 2m +1 kz_:l ok + 2m +1)a2kH

for |z| > 1. It then follows from (2.4.7)) that

|Fa(z)| « L and |Fj(z)| « A72 (2.4.12)
A2 4 g2 A " w|(A2 + 22) o
Observe that for any complex number z we have
: 2 27|Im 2|
sinmz e
. 2.4.13
= | 1% | 2|2 ( )

Expressions (2.4.8) and (2.4.9)) can be rewritten as

L sinm(z —n + 1)\ ? /
Gai= Y (B m- ) + Gont DR D} @)

o\ m(z—n+3
and
GA(z) = (Siijz)QFA(O) + (WY {FA(n) +(z— n)F’A(n)}. (2.4.15)

n#0

It follows from (2.4.12)), (2.4.13)), (2.4.14)) and (2.4.15) that

Gi « 27 |Im z|
CZE@] «n T



and from ([2.4.10)) this implies (2.4.3).

To bound Gi on the real line, we explore the fact that Fa is an even function (and hence

F is odd) to group the terms conveniently. For the majorant we group the terms n and

—n in (2.4.15) to get
sina\ 2
+ i) —
Galz) = < — ) Fa(0)
) (2.4.16)
sin?7(x —n /
+ Z ( )2>{(2x2—|—2n2)FA(n)+(xQ—n2)2nFA(n)},
and it follows from (2.4.12)) and (2.4.13) that
AQ
|GA(2)] <m YRR (2.4.17)

It may be useful to split the sum in (2.4.16)) into the ranges {n < |z|/2}, {|z|/2 <n < 2|z|}
and {2|z| < n} to verify this last claim. The bound

A2

follows in an analogous way, grouping the terms n and 1 —n (for n > 1) in (2.4.14]). From

(2.4.10), (2.4.17) and (2.4.18)) we arrive at (2.4.2)). .

Part (ii) From the inequalities (2.4.2) and (2.4.3)), it follows that the functions gx have
exponential type 2w and are integrable on R. By the Paley-Wiener theorem, the Fourier

transforms §x are compactly supported on the interval [~A, A]. Moreover, using ([2.4.2)

we obtain

+ * + 2mi * * 1
|gZ(£)‘ = J‘ gz(w)ei mizg dx < J‘ ’gA ’ d:l: KQerlJ m dx Lim 1.
—Q0 —0 e}

Part (ii) From ([2.4.7), (2.4.10) and the identities in [25, Section 11, Corollary 17 and

Example 3] we obtain

[ @) = g a0} a0
_ if; {Fa(z) — Gx(2)} do

0
_ ij { Z (_1)n+1)\—1/26—7r)\_1n2} dl/A()\)
0 n#0

3/2 —mXo—1/2)2A2% _ _—mAA?
n+1 1/2 =A™ In2 _1\2m [ € e
AJ f { AT } (U 2) ( o ) do dA
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1 (3/2 m [ B —mA(0—1/2)2A% _ _—7AA?
=< | @-b) f { 3 (1A 2em 1”2} (6 D — dX do
1/2 n#0

1 3/2 \2m 1+ 6727r(0'71/2)A
_ = _ Ly
N (0 —3)" " log 11 e 2nA do,

where the interchange of integrals is justified since the integrand is nonnegative. In a similar

way, we have

Jaooo{g;mH,A(l‘) — foms1(2)} dz

1 0
— AJ {GX(z) — Fa(z)} d=
—0
1 Jw{ 2 )\1/267T)\1n2} dv ()\)
= A A
A 0 n#0
1 [ 3/2 3 12 om 6771')\(0'71/2)2A2 _ e*ﬂ')\AQ
:AL L/z {ZA e (7=3) 22 do da
n#0
3/2 o0 3 —mAo—1/2)2A2% _ _—mAAZ?
= % (o - 5)2’"J { STAY2emm 1”2} (e = ¢ ) d\ do
1/2 0

n#0
1 3/2 om 1— e—27r(o‘—1/2)A
=-x o (a - %) log | o 2nA do.
This concludes the proof of Lemma [2.§ O

2.5 Proof of Theorem 2.3 in the case of n odd

Let n = 2m 4+ 1. To simplify notation we disregard one of the subscripts and write
+

gx(z) = Gom+1.a(2). For afixed t > 0, we consider the functions hk(2) := gx(t — 2). Then
?Li(lf) = ga(—&)e ¢ and the condition |hX(s)| « (1 + |s|)~2 when |Res| — oo in the
strip [Im s| < 1 follows from (2.4.2), (2.4.3) and an application of the Phragmén-Lindelof
principle. We can then apply the Guinand-Weil explicit formula (Lemma to get

TP e S + AN 1y
gga(t ’7)_{9A<t 5; ) T9a(t+5; 5 Ia(0)logm

1 (* I’ /1 ]

+ o gi(t—z)Re = < + Z;) dz (2.5.1)
1 A(”) ~+ log n —itlogn ~+ log n itlogn
2m & /n {gA or ) € Toa\r )¢ '

We now analyze each term on the right-hand side of ([2.5.1)) separately.
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1. First term: From (2.4.3) we get

O DY U | P i (2.5.2)
Ia\"T ) TIA T 2 )| S T i Ar .
2. Second term: From (2.4.4) we get
]. ~+
ﬂgZ(O) log 7| <pm 1. (2.5.3)

3. Third term: This is the term that requires most of our attention. Using (2.3.8)) and [50,
2.733 - Formula 1] we start by observing that

J_OO fom+1(x) do = B f—oofo o? log (02—1-902 do dz

1 1 00] 1 2
— f O'me log (;2) dz do
2 Jo —o o+

o0
1 1+ a2
= - f o?m |:£L' log <2+$2> + 2arctan(x) — 20 arctan <:1:>] do
2 Jo o +x o
—0
1
= WJ o?™(1 —0o) do
0
— u (2.5.4)

2m+1)(2m +2)

Let us assume without loss of generality that ¢ > 10. Using Stirling’s formula for I"/T" (cf.
[36, Chapter 10]), together with (2.4.2), (2.4.5), (2.4.6) and (2.5.4)), we get

[~ 4 /1 iz

—| gtt—2)Re =(>+2)d

2wfng( z) er<4+2> v
1 o0

= ga(2)(logt + O(log(2 + [2]))) dz

2 )

1 [ .
~or {f2m+1($) - (f2m+1(:l?) - gz(x))}(logt + O(log(2 + |z|))) dx

- (2.5.5)

B logt logt (32 11\2m 1 F e 2m(0—-1/2)A
S 2@2m+1)2m+2)  27A 12 (0= 3)" log 1T e 2rA do +0(1)
B log ¢ logt (® 1\2m — on(e-1/2)A
T 22m+ 1)(2m+2)  27A L/z (0=3)" log <1+e )da

+0 (e logt) + O(1).

We evaluate this last integral expanding log(1 F z) into a power series:

0¢]
f (O’ . %)Qm log <1 T e—27r(o‘—l/2)A> do = f
1/2 0

Q0

o2m log (1 T 6_2””A> do
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00 e—27raA(2k+1) e 2moA(2k+2)
_ 2m —_
= J o F — do
k=0

o 2% + 1 % + 2
B joo _om _6—2770'A(2k+1) B 6—27T0'A(2k‘+2) q
= T o
= 2% + 1 2k + 2

_ (Zm)' . 1 B 1
- (27TA)2m+1 = + (2k + 1)2m+2 (2k + 2)2m+2 )

The interchange between integral and sum above is guaranteed by the monotone convergence
theorem since all terms involved have the same sign. We have thus arrived at the following

two expressions:

(e, I (1 iz
%J_ng(t_x)ReF <4+2> dx

(2.5.6)
logt (2m)! ¢(2m + 2) N
- ) - ,
2(2m +1)(2m + 2) + (27 A)2m+2 ogt+ O (e ogt) +0(1)
and
I (* _ I’ /1 T
o f—oogA(t —x)Re T <4 + 2) dz
_ logt _ (2m)! (1—272m-1) ¢(2m + 2) oo 1 (2.5.7)
C2(2m 4+ 1)(2m + 2) (2mA)2m+2 0g

+0 (ef7TA logt) + O(1).

4. Fourth term: Recall that the Fourier transforms ai are supported on the interval [—A, A].
Using (2.4.4)), summation by parts and the Prime Number Theorem we obtain

1 A(n) {/\+ < 10gn> —itlogn ~+ <logn> it lo n} A(n)

— ), —=30x | — e +oa | —=—)e"® LKm —

2 ;2 \n 27 2 n<§”A n(25.8)
& €A,

Final analysis: Finally, recalling that n = 2m + 1 we consider two cases:

Case 1: m even. In this case, by (2.3.3)) we have

1 1
m+1(t) = oo ———x logt — ——— m+1(t — 1).
Szm1(t) 27 (2m + 2)! o8 W(gm)!;h +1(t =) + O(1)
Using (2.4.2) we arrive at
1
on2m 1+ 2) 8 W(Qm)!;gZWHA(t 7) + O(1)

< Som+1(t)
< g 5 s Dol + O
S orem+2) 8T rem) 21921607 :
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From [2.5.1), 5.2), .5.3), .5.6), @5.7) and (2.5.8) we find

C(Qm + 2) AQ eﬂ—A —7mA A
(@n AT logt+0O v O (e7™ logt) + O(e™ +1)
< Som1()
o1 (2.5.9)
(1—272m )g(2m+2)l 'O 2ema
(2w A)2m+2 °8 1+ At
+0 (6_7rA log t) + O(e7rA + 1).
Choosing
mA =loglogt — (2m + 3) logloglogt
in (2.5.9) we obtain
¢(2m + 2) logt
— )| —————— < Som+i(t
( - 22m+2 o (loglog t)2m+2 Sam+1(t)

((1 — 2721 ¢(2m + 2) N 0(1)> ( logt

T . 22m+2 log ]Og t)2m+2 ’
where the terms o(1) above are O(logloglogt/loglogt).

Case 2: m odd. Using (2.3.3) we get

Som+1(t) = I logt + W(;m)!;fMH(t —7) +0(1),

2m(2m + 2

and we only need to interchange the roles of gz and g, in comparison to the previous case.

Similar calculations show that

_ logt n logt
— (Copp1 +0(1)) Toglog gz < Sme1(t) < (Colpar +o0(1)) Tloglog 22"
where the terms o(1) above are O(logloglogt/loglogt) and
(1—272m"1)¢(2m +2) ¢(2m +2)
. +
Comi1 = —om 2 and Cyppy =~ —gnia -

This completes the proof of Theorem [2.3] for n odd.

2.6 Proof of Theorem 2.3 in the case of n even

In order to further simplify the notation let us write

__logtlogloglogt
and 7, (t) := (loglog 1)
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Let n > 2 be an even integer (the case n = 0 was established in [I6]). We have already
shown that

—C () + O(rps1(t) < Snc1(t) < CF_ 14, (t) + O(rn41(t)) (2.6.1)
and

—C 1 lnta(t) + O(rngs(t)) < Sns1(t) < Oy lnra(t) + O(rnis(t)). (2.6.2)
Our goal now is to obtain a similar estimate for S, (¢) that interpolates between (12.6.1)) and
(2.6.2). We view this as a pure analysis problem and our argument below explores the fact
that the function S, (t), for n > 2, is continuously differentiable.

By the mean value theorem and ([2.6.1)) we obtain, for —/t < h < /1,

Sn(t) = Sp(t —h) = hSp—_1(t})
< (xn>0 M Gy + xn<o [ Cy) €a(th;) + 1R O(rnya () (2.6.3)
< (Xn>0 |h| C_y + xn<o |h| Cp_y) €a(t) + |R| O(rn41(2))

where t7 is a suitable point in the segment connecting ¢ — h and ¢, and x>0 and xn<o are
the indicator functions of the sets {h € R; h > 0} and {h € R; h < 0}, respectively.

Let a and b be positive real numbers that shall be properly chosen later (in particular, we
will be able to choose them in a way that a +b = 1, for instance). Let v be a real parameter
such that 0 < v < +/t. We integrate with respect to the variable h to get

1 br

Sp(t) < Sp(t —h) dh

(a+b)v J

1 by ~
T aror U (xn=0 1] Co_y + xn<o [P Cy_y) dh} (1)

b

t g || an| o)
20-&- QZC—

- (a:b)y[snﬂ(t +av) — Spp1(t — by)] + [b "5(1a++ 3 ”—1] vl (t)

+ O(vrnaa ().

We now use (2.6.2)) to get

1 _

Sn(t) < m [C:Lr+1€n+2(t + CLI/) + CnJrlEn_A,_Q(t - bl/)
+ Orasa(t + av)) + Olrns(t — ) |
VOl +a*C,
2(a+b)

vin(t) + O(vrps1(t))
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Cop1+Coin | 1 BCyy +a*Cy
= [(a—l—b) > Unia(t) + 2(a + b) vin(t)

+0<”fm>+0@mﬂwy (2.6.4)

Choosing v = @ in (2.6.4), where o > 0 is a constant to be determined, we find

&ﬁ)s{

We now choose a > 0 to minimize the expression in brackets, which corresponds to the

1

+ —
Co1 + 0y | 1
o

n

(a +b)

bQC':LQl + CLQC,;l
2(a+b)

a} lns1(t) + O(rpta(t)).

choice 12 12
B Chii +Coy V*Cy ) +ad*C,
R A PP 2(a + b)
This leads to the bound
_ _ /2
O+ o) (20, v a2 ) ]
SM®<2[( +1 35+bpl ) ls1(t) + O(rpia(t)). (2.6.5)

We now seek to minimize the right-hand side of (2.6.5)) in the variables a and b. It is easy
to see that it only depends on the ratio a/b (and hence we can normalize to have a +b = 1).

If we consider a = bx we must minimize the function

(Ch +Cr) (Chy +2°C ) v

2(x +1)?

H(x) =2

Note that CF | > 0 and C’:L—FH > 0. Such a minimum is obtained when z = C ,/C,_,,

leading to the bound

Sa(t) <

2 CTT +C, C;f— Che 1

The argument for the lower bound of S, (¢) is entirely symmetric.

This completes the proof of Theorem
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Chapter 3

The Riemann zeta-function and

bandlimited approximations II

This chapter is comprised of the paper [A2]. We provide explicit upper and lower bounds
for the argument of the Riemann zeta-function and its high moments in the critical strip
under the assumption of the Riemann hypothesis. This extends the bounds of the previous
chapter and sharpens the error terms in such estimates. The novelty here is the use of the
explicit formulas for the Fourier transforms of the bandlimited approximations that will
appear. We also show bounds for the real part of the logarithmic derivative of the Riemann

zeta-function in the critical strip.

Although the results in this chapter end up generalizing the results of Chapter 2, we
emphasize the fact that this chapter is considerably more technical. For this reason we
decided to keep the important case of the critical line in a separate chapter to clarify the

true insights and the rightful steps of our method.

3.1 Behavior in the critical strip: S,(o,1)

In this section we extend the definition of the functions S,(t) in to the critical
strip. Let ((s) denote the Riemann zeta-function and let % < 0 < 1 be a real number. For
t > 0 we define

S(o,t) = %arg{(a + it),

where the argument is obtained by a continuous variation along straight line segments
joining the points 2, 2 + it and o + it, assuming that this path has no zeros of {(s), with the
convention that arg {(2) = 0. If this path has zeros of {(s) (including the endpoint o + it)
we set

S(o,t) =3 lim {S(o,t+e)+ S(o,t—¢)}.

e—0*t
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Similarly to we define the sequence of high moments S,(c,t) of S(o,t). Setting
So(o,t) = S(o, ) for n > 1 and t > 0 we define the functions

t
Sp(ont) = J Sp1(0,7) AT + Gy
0

where 6, » is a specific constant depending on o and n. For k € N, these constants are given

by
(_1)k—1 0 o0 0 o0
52k,170 = Wf J J f IOgK(J())’ dUo d01 dng,Q
o 02k —92 g2 JO1

for n = 2k — 1 and by

1 p1 1 rl (_1)k71(1 _ U)Qk
dok,o = (—l)k_lj J J f dog doy ... dogg_1 =
o Jogr_1 oo Joi (Qk)‘

for n = 2k. Note that in particular we have that Sy(3,t) = S,(t) for t > 0.

The main purpose of this chapter is to extend the bounds of Theorem to the critical
strip in an explicit way. Assuming RH, for % < 0 < 1, another function that will play an

important role in our study is the derivativdﬂ

S_1(o,t) := S\(o,t) = Reg(a + it).

3.1.1 Main result

For an integer n > 0 we introduce the function

g T (3.1.1)

The function zH,(x) = Li,(x) is known as polylogarithm of order n in the classical termi-
nology of special functions. Note that Hy(x) = 1/(1 — ) for |x| < 1. Our main result is

stated below, in which we regard o and t as free parameters.

Theorem 3.1. Assume the Riemann hypothesis and let n = —1. Let s<o<landc>0
be a given real number. Let t > 0 be such that loglogt > 4. In the range

(1 —0)?loglogt = c (3.1.2)

we have the uniform bounds:

IThe derivative is calculated over the variable ¢, when o is fixed.
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(i) Forn = —1,

1 log t)2—2o C/
e log )220 . (0 —3)( <S 1. ZRe >
C7y,(t) (logt) + 0 < (1= o) loglogt S_10(t) = Re R (o +it)
— (3.1.3)
logt)*==°
< C+ log t 2—20 Oc .
o) lg) <w—§ﬂl—®%b@%ﬂ>
(ii) For n =0,
_ (10g t)2720 (10g t)2720'
- P PR < Onlo,
Cno(t) (loglog t)n+1 "\ (1 —0)2 (loglog t)+2 Snl,t)
>, \ s (3.1.4)
< C+ (t) (10g t) i +0 (10g t) i
= o (log log t)nt! "\ (1 - 0)% (loglogt)nt2 )
Above, Ci,(t) are positive functions given by:
e Forn = —1 odd,
i ()= —(nu (+ (—1)(n+D)/2 (logt)1_2”> ;201 (3.1.5)
e gntlg \ 7T o(l—0))" o
e Forn =20,
+ + — - 1/2
Co(t) = (2(C, (6) + Cr (1) C2y, (1) (3.1.6)
o Forn =2 even,
2(Ct,y (1) + C Lo\
Cfg(t) _ ( n+1,o-( ) . n+1, 0'( )) 7n71,0'( ) nfl,o( ) . (317)
7 Cn 1 o'( ) + Cnfl,a'(t)

Remark 3.2. In the course of the proof of Theorem we obtain slightly stronger bounds
than the ones presented in (3.1.3) (see inequalities (3.5.12)) and (3.5.15) below). In the
statement of Theorem[3.1 we presented the error terms in (3.1.3)) and (3.1.4) in a convenient

way for our interpolation argument in Section [3.6

Observe that letting o — %Jr in our Theorem (for n = 0), we obtain a sharpened
version of Theorem with improved error terms (a factor logloglog ¢ has been removed).
In particular, we record here the following consequence, a new proof of the best known

bound for S(¢) under RH (in fact, with a sharpened error term when compared to [16] and
k)i

Corollary 3.3. Assume the Riemann hypothesis. For t > 0 sufficiently large we have

1 logt logt
5001 < § i +0 (oot )

4 loglogt (loglogt)

2For an explanation of why all these methods lead to the same constant 1/4 in the bound for S(t), see
[I7, Section 3].
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In order to find bounds for S(o,t) which are stable under the limit o — %Jr (and hence
extend Theorem , we modified a bit our interpolation method in to use both
bounds for Si(o,t) and only the lower bound for S_1(o,t). Observe that the lower bound
for S_1(o,t) in Theorem n is stable under the limit ¢ — %+, whereas the upper bound
is not. This is somewhat expected since S(t) has jump discontinuities at the ordinates of
the non-trivial zeros of ((s). In our case such blow up comes from the fact that we use a
bandlimited majorant for the Poisson kernel and, as o — %+, this Poisson kernel converges
to a delta function. This lack of stability may be related to the existence of small gaps
between ordinates of zeros of ((s). Something similar can be seen in the work of Ki [61] on

the distribution of the zeros of ('(s).

If one is interested in bounds as t — o for a fixed o with % < 0 < 1, our Theorem
yields the following corollary (the bounds below can be made uniform in 6 > 0 if we
consider £ + 6 <o <1-4.)

Corollary 3.4. Assume the Riemann hypothesis and let n = —1. Let % <o <1 bea fixed

number. Then

Wn 20 — 1 (logt)?~2°
n(O )< ooz (L —F——= D) ———7
[Sn(0,2)] T ( * o(l—o) +ol )> (loglog t)n+1

as t — o, where wy, = 1 if n is odd and w, = V2 if n is even.

This plainly follows from (3.1.5) and (3.1.7)) for n # 0. For the case n = 0 one would simply
perform the full interpolation method as described in §3.6.2| (using the upper and lower
bounds for both Sy (o,t) and S_1(0,t)) to obtain the optimized constant as in (3.1.7).

Remark 3.5. The extra factor /2 in Corollary when n is even comes from
and it is due to our indirect interpolation argument. In principle, if one could directly solve
the associated extremal Fourier analysis problem in the case of n even, this could lead to
a better bound than . We note, however, that this is a highly nontrivial problem in
approximation theory. See the discussion in below.

Finally, notice that we have purposely restricted our range to be strictly inside the
critical strip, away from the line ¢ = 1. With our methods it is also possible (by means
of some additional technical work) to consider the case when the parameter o is close to
1, obtaining bounds of the sort S, (0,t) = O,(1), for n > 1 (with explicit constants). We
do not pursue such matters here, feeling that classical methods in the literature are more
suitable to treat this range. In fact, bounds for S, (1,t), for n > 1, are easily obtainable
directly from and the use of Fubini’s theorem with the series representation in the
region {z € C; Rez > 1}. These bounds would be equal to our bounds in the cases of n odd,
and better in the case of n even, since we use an indirect approach, via interpolation, for
these cases. In the particular case of n = 0, the known bound [S(1,?)| < L logloglog t+O(1)

(see [T4, Corollary 13.16]) is not easily obtainable by our particular interpolation argument.
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3.1.2 A result for log|((5 + it)|

Using the lower bound for the function S_;(c,t) in Theorem we also deduce a new
proof of the best known bound, with improved error terms, for log |((5+it)| under RH (see
[29] and [14]).

Corollary 3.6. Assume the Riemann hypothesis. For t > 0 sufficiently large we have

log2 logt logt
2 loglogt (loglogt)? ) -

log’C(%—i-z’t)‘ <

Proof. Assuming RH, it follows from [74, Corollary 13.16] that

(log 75)2—20
(1 —0)loglogt

1
log |((o + it)| < log T +O<

uniformly for 1/2+1/loglogt < o < 1—1/loglogt and t > 3. Therefore, letting § = §(t) =

logloglogt
% + 71gogigf , we have
) C/
log|¢(L + it)] = —f Re S (0 + it) do + log |C(6 + it)
1/2
é /
¢ . < log t >
= — Re=(c+it)do+ 0O | ————— | .
Jy,Re o+ inar+o (it

Since the lower bound in (3.1.3) implies that

/ loo t 2—20
—Reg—(a+it) < (log )

c ST (logd) 2 +O0((0—3)(logt)*~*?)

uniformly for 1/2 < o < 4, we see that

0 1 2—-20 logt
log |C(% + Zt)‘ < J;/z {15_0(?0275)1_20_ + O((U—%)(logtﬁ%)} do + O <(10g01§gt)2> .

The corollary now follows from the estimates

f‘s (logt)?=20 do < fl (logt)?=20 d log2 logt logtlog(1 + 1/logt)
_\PeY < P8 4 = _
1/2 1+ (logt)1=22 ? 12 1+ (logt)t—27 2 loglogt 2loglogt

and

0 logt
1 2—20
o—5)(logt do « .
L/Q( 2)( ) (loglog t)?

3.1.3 Strategy outline

The proof of these results follows the strategy of the previous chapter. It is worth

mentioning that here we face severe additional technical challenges in order to fully develop
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this circle of ideas to reach our desired conclusion.
The strategy is divided into the following four main steps:
Step 1: Representation lemma.

The first step is to identify the functions of a real variable that are naturally connected
with the objects to be bounded, in our case the functions S, (o,t). For each n > —1 and

% < 0 < 1 we define the function f,, , : R — R in the following manner.
o If n =2m, for m € Z>¢, we define

3/2

fomo(2) = f

[

(o —U)Qm(( - S ) da. (3.1.8)
o —
o If n =2m+ 1, for m € Z>(, we define

(a0 — 0)*™ log (W) da. (3.1.9)

a—1)2 442
(a—3

1 3/2

fomt1,0(2) = 2f

g

o If n = —1, we define

NO|—=

(0 —
qo(x) = ——5—=—. 3.1.10
f 170'( ) (O__ %)2 +x2 ( )
We prove a representation lemma (Lemma [3.8) where we write S,,(o,t), for each n > —1, as
a sum of a translate of the function f, , over the non-trivial zeros of ((s) plus some known

terms and a small error.

Step 2: Extremal functions.

As mentioned in the previous chapter, the tool to evaluate sums over the non-trivial
zeros of ((s) is the Guinand-Weil explicit formula. However, the functions f, , defined
above do not possess the required smoothness to allow a direct evaluation. In fact, for
o =3 and n > 1, we have that fo, 1 s of class C"~1(R) but not higher (the n-th derivative
is discontinuous at the origin). Note also that fo, 1 is discontinuous at the origin and ffl, 1
is identically zero. For 1 < o, the functions f, , are of class C*(R) but do not have an
analytic extension to the strip {z € C; —% —e<Imz < % + ¢}. In fact, the functions f, »
are analytic in the strip {z € C; —(0c — %) < Imz < (¢ — 1)} but the n-th derivative of
fn,s cannot be extended continuously to the points +(oc — )i, for n > 0 (for n = —1 the

function f_1, has a pole at +(c — 1)i).

The idea is then to replace the functions f, , by suitable bandlimited approximations
(real-valued majorants and minorants with compactly supported Fourier transforms) chosen
in such a way to minimize the L'(R)—distance. In our case, the situation is markedly
different depending upon whether n is even or odd. When n > —1 is odd, the function

fn,o is even, and the robust Gaussian subordination framework of Carneiro, Littmann and
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Vaaler [25] provides the required extremal functions. When n is even, the function f, , is
odd and continuous (except in the case n = 0 and o = 3, which was considered in [16]). In
this general situation, the solution of the Beurling-Selberg extremal problem is unknown.

Therefore, we adopt a different approach based on an interpolation argument.

Step 3: Guinand-Weil explicit formula and asymptotic analysis.

In the case of n odd, n = —1, we bound S,,(o,t) by applying the Guinand-Weil explicit
formula to the Beurling-Selberg majorants and optimizing the size of the support of the
Fourier transform. We do a careful asymptotic analysis of all the terms that appear in the
explicit formula. In particular, we highlight that one of the main technical difficulties of
this work, when compared to [16], [18], is in the analysis of the sum over primes powers. This
term is easily handled in the works [16, [I8] when o =  but, in the case 0 > 1 that we treat
here, we must perform a much deeper analysis, using the explicit knowledge of the Fourier
transform of the majorant function. This refined analysis allows to improve the error term
in Theorem We collect in the Appendix some of the calculus facts and some of the

number theory facts that are needed for this analysis.

Step 4: Interpolation tools.

Having obtained the desired bounds for all odd n’s, with n > —1, we proceed (as in the
previous chapter) with an interpolation argument to obtain the estimate for the even n’s in
between, exploring the smoothness of S, (o, t) via the mean value theorem. In the particular
case n = 0, we modified a bit our interpolation method to use both bounds for S;(c,t) and

only the lower bound for S_;(o,t).

3.2 Representation lemma II

In this section we collect some useful auxiliary results. Lemmas [3.7 and [3.8] below have
appeared in Lemmas and in the case o0 = % The proofs for general % <o <1 are
essentially analogous. We include here brief versions of these proofs, both for completeness

and for the convenience of the reader.
Lemma 3.7. Assume the Riemann hypothesis.

(i) Forn =0, % <o <1andt>0 (andt not coinciding with the ordinate of a zero of

((s) when n =0 and o = 3), we have

Su(ont) = —~ 1 infoo( o Sla v d (3.2.1)
na,—wmmgaacaz ap. 2.
(ii) Forn=—1, 3 <o <1 and t >0, we have
/ 1. ¢ ,
S_i(o,t) :== Sy(o,t) = ;Re Z(O’ + it). (3.2.2)
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Proof. For the case ¢ = 3 this is stated in Lemma and the proof for (i) in the case
general 3 < o < 1 follows the same outline. Part (ii) just follows from the definition of
S_l(O' , t). OJ

We are now in position to state the main result of this section, an expression that

connects Sy (o, t) with the functions f, , defined in and (3.1.10). This result

is an extension of Lemma[3.8/and the proof follows the same outhne. In the proof of Theorem
we shall only use the case of n odd, but we state here the representation for n even as

well, as a result of independent interest.

Lemma 3.8 (Representation lemma). Assume the Riemann hypothesis. For each n > —1

and % <o <1 (exceptn=—1and o = 5), let fno: R — R be defined as in , -
and (3.1.10). Fort > 2 (and t not coinciding with an ordinate of a zero of C(s) in the case
n=0ando = %) the following formulas hold.

(i) If n =2m, for m € Zxq, then

Som(o,t) O (1). (3.2.3)
(i) If n =2m + 1, for m € Zxq, then
(=)™ 3 2m+2
R 1
Sem1(01) = gy (2 —0) T lost
(3.2.4)

_ 75;2173; S famiro(t =) + Om(1).

(iii) If n = —1, then

S_i(o,t) = —ilog——i— Zf—lff (1) (3.2.5)

The above sums run over the ordinates of the non-trivial zeros p = % + iy of ¢(s).

Proof. We first treat (ii). It follows from Lemma and integration by parts that

Somsn (o)1) = — Im{(mﬂ)f) (=02 (ot it) da}

T 2m + 1)! ¢
_1\ym+1 Q0
- 7r((271n)—|—1)'Re{J (o — g)?mH! éé(oz—i—zt) da}
1y o (3.2.6)

= ) Re U:O (o — 0)*™ log (o + it) da}

_1\m 3/2
_ 75(21721)! J (@ — )%™ log [C(a + it)| da + Op(1).
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Using the equation ([2.3.6) established in the proof of Lemma we have

_ 2
log[¢(a+it)] = (3 — §)logt — éng ((a _1 T)é: (Z)— 7)2> +0(1), (3.2.7)
o 2

uniformly for 1/2 < o < 3/2 and t > 2. Inserting ((3.2.7)) into - 3.2.6|) yields

_1\m 3/2
Som+1(0,t) = (=1 (J (o — o)™ (2-9) doz) logt

m(2m)! \ J,

(=™

= S(@m 1 21
—H” 52 m 1+ (t—~)2
_ 2(#(21)%)';]0 (o — 0)*™ log ((a— 5)2(_1_ (Z)—’Y)z> da + O (1)
= %((2;71)112)' (% _ 0_)2m+2 logt — %ngwrm(t —7) + On(1),
¥

where the interchange between summation and integration can be justified, for instance,
by the monotone convergence theorem, since all the terms involved are nonnegative. This

concludes the proof of (ii).

We now move to the proof of (iii). Let s = o + it and recall that we are assuming t > 2.
From the partial fraction decomposition for ¢’(s)/¢(s) (cf. [36, Chapter 12]), we have

! 1 1 1T 1 1
%(s)zZ( +>—2F(;+1>+B+210g7r—8_1, (3.2.8)

S \s—p p

with B = —3] Re(1/p). Again using Stirling’s formula we obtain

S_1(o,t) = Re(";(a—i—zt) —ilog——i— Zf_lgt— ()

This proves (iii).

Finally, the proof of (i) follows along the same lines, starting with (3.2.1)), restricting
the range of integration to the interval (o, %), and using the partial fraction decomposition
(3.2.8) after adding and subtracting a term C—/(% + it) to balance the equation. The details

¢
of the proof are left to the interested reader. O

As mentioned in the previous section, we propose to use the Guinand-Weil explicit
formula (Lemma to understand the sum of over the non-trivial zeros of ((s) that appear
in Lemma but the functions f,, » do not possess the required smoothness properties to
allow the application of the Guinand-Weil formula. The key idea to prove Theorem

in the case of n odd, is to replace the functions f,, by appropriate extremal majorants
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and minorants of exponential type (thus with a compactly supported Fourier transform by
the Paley-Wiener theorem). These bandlimited approximations are described in the next

section.

3.3 Extremal bandlimited approximations 11

As in the previous chapter, we will use the Gaussian subordination framework of Carneiro,
Littmann and Vaaler [25] to find our extremal functions. It turns out that our functions
fn,e when n is odd, defined in and , are included in this class, since that
these functions can be write in the form . Moreover, it is also crucial for our purposes
to have a detailed description of the Fourier transforms of our majorants and minorants in

order to analyze the contribution from the primes and prime powers in the explicit formula.

3.3.1 Approximations to the Poisson kernel

We start with the case of the Poisson kernel f_; ,. In order to simplify the notation we

let 8 =0— % and define
__B
62+x2'

The solution of the extremal problem for the Poisson kernel below is of independent interest

hg(x) == f-1,0(x) (3.3.1)

and may have other applications in analysis and number theory.

Lemma 3.9 (Extremal functions for the Poisson kernel). Let 5 > 0 be a real number and
let A > 0 be a real parameter. Let hg : R — R be defined as in (3.3.1). Then there is a
unique pair of real entire functions PN C - C and mgA : C — C satisfying the following

properties:
(i) The real entire functions m;—FA have exponential type 2w A.

(ii) The inequality

mg A () < hg(z) < mEA(:E)
holds pointwise for all x € R.

(1i1) Subject to conditions (i) and (ii), the value of the integral

JOOOO {mEA(x) - mEA(x)} dz

18 minimized.
The functions m%A are even and verify the following additional properties:
(iv) The L'—distances of m;—rA to hg are explicitly given by

0 N 27T€727TBA
J_OO {me’A(iL') — h/g(m)} dz = 1 o=2:PA (3.3.2)
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and
2re2mBA

f; {ho(e) — mp a0} dr = 25 (3.3.3)

(v) The Fourier transforms of m?A, denoted by fﬁ;A(f), are even continuous functions

supported on the interval [—A, A] given by

R 2mB(AIE]) _ —2mB(A—E])
Wﬁd@zﬂ( : (3.3.4)

(eﬂﬂA T e—WﬁA)2

(vi) The functions m;—FA are explicitly given by

2wBA —2wBA _ .
+ _ B e +e 2 cos(2mAz)
m’B’A(Z) B <,82 + 2’2> ( (eﬂﬂA F efﬂﬁAf ’ (3.3.5)

In particular, the function mg A S nonnegative on R.

(vii) Assume that 0 < < % and A = 1. For any real number x we have

_ 1
and, for any complex number z = x + iy, we have
A2e2mAly]
+ —_—
Im5.a ) < g ARD (3.3.7)
and
_ BAZeQﬂ-AM
|mg,A(Z)| « EEVNE (3.3.8)

Proof. We start by observing that (see (2.4.1))

o0
ho(e) = | e au(n),

where v is the finite nonnegative measure given by dvg(\) = 73 e~™5* d\. Let us define

the auxiliary function

T BA? D a2
Hrale) = s (5) = grgrys = |, 7 dast,

where v A is the finite nonnegative measure given by dvga(\) = TBA? e~ TABIA )\,

From [25 Section 11] we know that there is a unique extremal majorant M BJF Al2) of

exponential type 27 and a unique extremal minorant M 3 A(2) of exponential type 27 for
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the real-valued function Hg A, and these are given by

sin Tz = n H,
i - (Y] § sl g )
and
_ _ (cosTz 2 H[BA( *) Hlﬁ,A(n_%)
Mﬁ’A(Z) ( m > {n_zoo (z —n+ 52 (Z —n+ l) ' (3:3.10)

We now set
mE,A(Z) = MgA(Az) and  mg A (2) := Mg A (Az),

and a simple change of variables shows that these will be the unique extremal functions of
exponential type 2rA for hg, as described in (i), (ii) and (iii). From and ( it

is clear that M ﬂi A+ and hence m;gr A are even functions. We now Verlfy the items (1V) - (vn).

Part(iv) Since M /:?” A are entire functions of exponential type 2w whose restrictions to R
belong to L'(R), a classical result of Plancherel and Pélya [76] (see also [89, Eq. (3.1) and
(3.2)]) guarantees that M/;L,A are bounded on the real line and hence belong to L?(R) as well.
Moreover, still by [76], their derivatives (M ﬁi A) are also entire functions of exponential type
27 whose restrictions to R belong to L'(R) n L?(R). In particular, M ﬂi A are integrable and
of bounded variation on R, and thus the Poisson summation formula holds pointwise. This
can be used to calculate the values of the integrals of M EL A- Using the fact that M 5; A are
supported in the interval [—1,1] (which follows from the Paley-Wiener theorem) and the
fact that M g A interpolates the values of Hg A at Z (resp. M, 5.A interpolates the values of
Hga at Z + ) we find

e}
MIa(0)= ) Mja(n) = Z Hpa(n Z Hp,
n=-—o n=-—o k=—o0
0 —2nBA
=3 e N <W>
1 — e 27BA
k=—0o0
and
P e} 0 a0 .
Mga(0)= >, My (n+3)= > Hgaln+3)= >, (~1)"Hpa(k)
n=—o0 n=—au k=—o0
0 _ ,—27BA
1—e
o k —2nBA|k| _
k=—00

The relation ﬁzg’A(O) = ngA( ) and the fact that EB(O) = §*_hg(z) dz = 7 lead us
directly to (3.3.2) and (3.3.3)). This establishes (iv).
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Part (v) We have already noted that the Fourier transforms M /;,—r A are continuous
functions (since M ﬁi A € LY(R)) supported in the interval [—1,1]. From a classical result
of Vaaler [89, Theorem 9] one has the explicit expression for the Fourier transform of the
majorant, in which we use the fact that MEA(n) = Hg A(n) and (MEA)/(TL) = Hj A(n) for
alln e Z,

0

MiA©) = 3 <(1 — &) Mg A(n) + %m sgn(€) (MEA)’(n)> —2miné

(3.3.11)

o0

= 2 <(1 — &) Hp,a(n) + % sgn(€) H/'M(n)) o 2ming

2
n=—0w

for £ € [—1,1]. Using the Poisson summation formula we have

' Hga(n)e ™ = N Hya(E+k)

n=—0u k=—00
a0
= > mAeTPAAITE (3.3.12)

k=—0o0

—27BAl¢| —27BA(1-|¢])
_ A <e +e )

1— e—QWﬁA

and

o¢]

0
D, Hpa(m)e ™ = 31 Hsa(E+k)

n=-—ao k=—0o0

2mi(& + k) Ha A (€ + k) (3.3.13)

k=—00

2mi (€ + k)mA e 2mAAIEHEI

I|I MS I|I MS

k=—00

) ‘£| (6—27r5A\§| + e—QWBA(1—|§D) 6_2”BA ((227rBA‘£| - B_QWBAE')
= 2771 A sgn(f) 1 _ e—2mBA - (1 . e_gﬂﬁA)Q .

Plugging (3.3.12) and (3.3.13)) into (3.3.11) gives us

. e2mBA(=[E]) _ o—2mBA(1-(¢])
Mg,A(f) = TA )

(e78D — =AY
and from the fact that
~ + 1 5t §
s (€)= x M5 a (Z> (3.3.14)

we arrive at (3.3.4) for the majorant.
For the minorant we proceed analogously. From [89, Theorem 9] one has the representation,

in which we use the fact that ME,A(”"‘%) = Hga(n+3) and (ME,A)/(THL%) = HAA(TH-%)
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for all n € Z,

Mﬁ?A(&) = :Z_:OO <(1 - ’f‘) MiA(TL + %) + Tm Sgn(ﬁ) (MB_,A),<n + %)) e—27rz(n+§)§
= > <(1 —[é]) Hpa(n + 3) + 2%” sgn(€) Hj A (n + %)) e~ 2mintHE (3.3 15)

for £ € [-1,1]. Poisson summation now yields

0 0
S Hgaln+ ) e 2026 = N (C1)F g (€ + k)
n:_oo . (3.3.16)
e—2mBAlE| _ o—2mBA(1-[¢])
=74 1+ e—27BA
and
& : 1 O A~
) Hpa(n+3)e 28— N omi (¢4 k) (—1)F Hp A (€ + k) (3.3.17)
n=-00 k=—00
Ty €| (e—2nﬂA|§| _ 6—2W6A(1—I£|)) e—2mBA (ezﬂmm _ e_QWBA‘ﬂ)
= 97 ZA Sgn(g) ( 1 + 6_271_5A + (1 N G—ZTrﬁA)Z .

Plugging (3.3.16) and (3.3.17) into (3.3.15)) gives us

o A e2mBA(L—[E]) _ —2mBA(1-[¢])
ﬁ,A(&) =T (eﬂ.ﬁA + e_ﬂ/BA)Z )

and using (3.3.14)) we arrive at (3.3.4) for the minorant. This completes the proof of (v).

Part (vi) The proof of (vi) is a direct computation using (v) and Fourier inversion

A 2rB(A—E]) _ —2nB(A—€))
m;a’j,A(Z) = J ™ (e :

(eﬂ'BA F e—WﬁA)Q

) e27ri§z d£

—-A

We omit the details of this calculation.

Part (vii) From (3.3.5) it follows directly that 0 < mg 5 () for all z € R. We may also

write
L2
N B 4sin”(rAx)
mg A (2) = 571 .2 (1 + T (3.3.18)

We then note that in the range 0 < 8 < % and A > 1 the following estimates hold:

ﬁ < 1
B2 +x2 B+ 2?)

(3.3.19)
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and
g sin?(rAz) B sin(mAz)\? [ Az > BA 2
() 2 (22) (222 () ()

() ()@ o

mg A (T) < A0t

The idea to analyze the growth in the complex plane is similar. We start by rewriting ((3.3.5)

. m3A(2) = ; (Singé(j jﬁjﬁ)> (Singé(j i_ﬁ;ﬂ)> <e7r5A ?—inmy (3.3.21)

and then apply the following uniform bounds

: [Tm w|
sin w e
< 3.3.22
w ‘ 1+ |wl ( )
and
1 1 1
(3.3.23)

. &
I+ |w+iy]) A+|w—iy]) 1+ |w

that are valid for any w € C and v > 0. Using (3.3.22) and (3.3.23) in (3.3.21]) we derive

that
eTA(IIm 2[+5) e™A(Im z[+8) BA 2
1+ Alz + 40| 1+ Alz —iB| | \em™BA F e—mhBA
e27rA|Imz\ BA eTBA 2
1+ Alz| (e”BA F e“ﬁA) '

In the majorant case, we have

|m§A(z)| &«

= =

<

™

em™BA _ o—mBA

7BA 2
< bAe ) <1+ (BA)? « A%,

and this leads to (3.3.7)). In the minorant case we have

2
BA ™A
(o emmm) <O
and this leads to (3.3.8]). This concludes the proof of the lemma. O
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3.3.2 Approximations to the functions fo,,;1,

Our next task is to present the analogue of Lemma (i.e. the solution of the Beurling-
Selberg extremal problem) for the family of even functions fa,,+1, defined in (3.1.9)). This
result is an extension of Lemma where the case 0 = % was studied. We highlight the
explicit description of the Fourier transforms of the extremal bandlimited approximations.
This is a slightly technical but extremely important part of this chapter, since these Fourier
transforms will play an important role in the evaluation of the sum over prime powers in

the explicit formula.

Lemma 3.10 (Extremal functions for fo,,41,4). Let m = 0 be an integer and let % <o<l1
and A =1 be real parameters. Let fomi1, be the real-valued function defined in (3.1.9),

namely
1 3/2 2 1+x2
m+1,0(T) = 5 —o)™1 —— | da.
fom+1,0(2) QL (o — o)™ log (a— D)2+ a2 @

Then there is a unique pair of real entire functions gy, . , A : C — C and g;mﬂ oA C—-C

satisfying the following properties:

(i) The real entire functions g;—rmﬂ oA have exponential type 2mA.

(ii) The inequality

Tomi1,08(E) < fomi1,0(2) < 930416, () (3.3.24)

holds pointwise for all x € R.

(11i) Subject to conditions (i) and (ii), the value of the integral

o0
+ —
f {g2m+1,a,A(x> - g2m+1,a,A(x)} dx
—Q0
18 minimized.
The functions g;*rmH oA are even and verify the following additional properties:

(iv) For any real number x we have

1
J’_
‘92_m+1,0',A(x)} L 1122 (3.3.25)
and, for any complex number z = x + iy, we have
A2e2mAly]
+
21 Km T AN 3.3.26
|92m+1,0'7A(Z)| m (1+A|Z|)a ( )

where the constants implied by the <, notation depend only on m.
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(v) The Fourier transforms of g;—rmH’o’A, denoted by -/g\éim+1,o',A(€)7 are continuous func-

tions supported on the interval [—A, A] and satisfy

1B2mns1.0,4 (6] < 1. (3.3.27)

(vi) The L'—distances of g;—rmﬂ oA 0 fomy1,0 are explicitly given by

f_ {g;m+1,a,A(x) - f2m+1,a($)} dz

3/2 om 1— e—QW(a—l/Z)A
=X (a— o) log T da,  (3.3.28)

and

J_OO {fom+1,0(x) — gQ_erl,a,A(x)} dz

1 3/2 1 —2m(a—1/2)A
_ Aj (@ — o)™ log ( +le+ x| o (3329)
(vii) At & =0 we have
gi (0) T (% - O') 2m—+2
2mtl,0,4 (2m + 1)(2m + 2)
3/2 1 —2m(a—1/2)A
_ f )2 1Og< Jrle$ i > do.  (3.3.30)

(viii) The Fourier transforms §;—rm+1’U’A are even functions and, for 0 < & < A, we have the

explicit expressions

~+
g§m+1,U,A (g) =

{8 st (e
2, = |€ + kA (2r|€ + kA[)Zm+1 3.
— 2 B (3 J)2m+1—j ,
27r|§ T kA
where 7j = ol for 0.<j < 2m + 1.

Proof. Fix m = 0 and % < o < 1. For A > 1 we consider the nonnegative Borel measure

VA = V2m+1,0,A O (07 OO) given by

3/2 e~ a=1/2)2A% _ —7mAA?
dva(N) := J (o — o)™ 9 da dA,

o
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and let FA = Fyy,41,0.a be the function

0

Fa(x) := L e~ dva(N).

Recall that

1 2 1 A2 ) —mAa—1/2)2A2 _ —7AA2
Slog [ 22 - j e’ [ £ ‘ dA.
2 2?2+ (a — 5)2A2 0 2

Multiplying both sides by (o — ¢)?™ and integrating from o = o to o = % yields

L 2 4 A2
= (o — o)™ log da
2 ), 22+ (o — §)2A2

3/2 oo —mAa—1/2)2A% _ _—7AA?
= f f (v — o)™ el ¢ d\ da

s Jo 2X (3.3.32)

0 3/2 —mA(a—1/2)2A2 _ —7AAZ2

— Az 2m e e
= — da dA
fo e L (v — o) ( o ) Q@

= Fa(x),

where the interchange of the integrals is justified since the terms involved are all nonnegative.

It follows from ([3.1.9)) that
f2m+1,0(37) = FA(AZ') (3333)

In particular, this shows that the measure va is finite on (0, 0) since

JO " ava() = Fa(0) = fame1(0).

From the Gaussian subordination framework of |25 Section 11], there is a unique extremal
majorant GX(z) = G3,. ., . A(2) and a unique extremal minorant G (z) = G5, .1, A(2) of

exponential type 27 for Fa(z), and these functions are given by

(o) = sintz\? | &  Fa(n) Fr(n)
GA(2) = ( - > {n_zoo GompE > o) (3.3.34)

n#Q0

and

Gx(z) = (COS”Z>2{ i Fa(n—3) N Fu(n—1)

n=—oo(z_n+%)2 (Z_n—i_%)

} . (3.3.35)

Hence, the functions gx(2) = gai1.04(2) and g (2) = 95,11 .4 (%) defined by

ga(z) = GL(Az) and gx(z) := GA(Az) (3.3.36)
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are the unique extremal functions of exponential type 2mA for fo,11,, as described in
(i), (i) and (iii). From (3.3:34) and (3.3.35) it is clear that G, and hence gX, are even

functions. We now verify the items (iv) - (viii).

Part (iv) For o = i, the function f,,, 1L = fom+1 (see (2.3.8)) was already used in
Lemma in connection to bounds for Sy,,+1(¢) in the critical line and is explicitly given

by

f 1(z) = o (—1)" g2+ aretan 1 + i 7(_1)771_19 gZm2k
2m+ly (2m + 1) x) A 2k+1

Directly from the definition (3.1.9)) we see that

0 < f2m+1,o‘(x) < f2m+17%(l‘) and 0 < |fém+1,a($)| < |f;m+1?%(x)| (3337)

for all z € R and § < o < 1. Therefore, from (2.4.11) and (3.3:37) it follows that

1

5 and ’f§m+1,a($)| Lm ’3«"\(17

n —
’f2m+1,cr(x)‘ mIT + 22)

(note that the implicit constants do not depend on o). It then follows from (3.3.33)) that
(recall the shorthand notation Fa = Fopi1.0.4)

A2

and ‘F/A(IE)‘ Lim m

(3.3.38)

A2
‘FA((E)‘ Lm m

Expressions (3.3.34]) and (3.3.35)) can be rewritten as

GL(z) = (Sinm>2FA(O) S (sz_m>2 [Fa(n) + (= —m)Fa(m)}  (3.339)

Tz = m(z —n)

Gal2) = i <Sinﬂ(z_n+%)>2{FA(n—%)+(z—n+%)F/A(n—§)}. (3.3.40)

o\ m(z—n+ %)

We now use (3.3.38)), (3.3.39)), (3.3.40]) and the bound (2.4.13) to get

A2627r|lmz\
1+ |2

One can break the sums in (3.3.39)) and (3.3.40) into the ranges {n < |z|/2}, {|z|/2 < n <
2|z|} and {2|z] < n} to verify this last claim. From (3.3.36]) we arrive at (3.3.26]).

To bound the functions Gi on the real line, we explore the fact that Fa is an even

|GX(2)] <m

function (and hence F is odd) to group the terms conveniently. For the majorant we group
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the terms n and —n in (3.3.39)) to get

i) = (Sm”)zFAw)

T
) (3.3.41)
sin?7(z —n /
+ Z ( TP 2>{(2w2+2n2)FA(n)+(x2—n2)2nFA(n)},
w2 (x n?)
and it follows from (3.3.38]) and (2.4.13)) that
A2
GA@)| «m 7o—a- (3.3.42)

Again, it may be useful to split the sum in (3.3.41)) into the ranges {n < |z|/2}, {|z]/2 <
n < 2|z|} and {2|z| < n} to verify this last claim. The bound

2

Ga@)] «m 37—

(3.3.43)

follows in an analogous way, grouping the terms n and 1 —n (for n > 1) in (3.3.40)). From
(3.3.36)), (3.3.42)) and (3.3.43) we arrive at (3.3.25)).

Part (v) Since gQim +1.0.a are entire functions of exponential type 2rA whose restrictions
to R are integrable, it follows from the Paley-Wiener theorem that their Fourier transforms

are continuous functions supported on the interval [—A, A]. Moreover, from the uniform

bounds (|3.3.25)) we see that

|92m+1 N )| < J_OO |9;£m+1,g,A(93)| dz «,, 1.

Parts (vi) and (vii) From (3.3.42)), (3.3.43), and the fact that the Fourier transforms
@i are supported on [—1,1], we may apply the Poisson summation formula pointwise to
Gi. Recalling that Gz interpolates the values of Fa at Z, we use (3.3.32)) to derive that

GA()= 3] Gi(m)= ] Fa(n)

L W 1 A2
2] (v — o) ;Oolog T (o 12A? da

o n=—

1 3/2 - 1— e—27r(o¢—1/2)A
QJ (v —0)? (27rA(;’ —a)—2log ( = da

(e

A (3 _ g)2mt? 3/2 1 — e—2m(a—1/2)A
_ T (3-0) —J (v — 0)*™ log 16 da.

2m+1)2m+2) J, —e—2mA
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Above we have used the fact that, for b > a > 0 (see, for instance, [14] §4.2.1])

00 2 2 —2ma
n°+b 1—e
n=—oo

One can prove this directly regarding both sides as a function of the variable b, observing

that they agree when b = a, and showing that they have the same derivative.

We proceed analogously for the minorant

o o
Gr0)= ) Grln)= ), Fa(n+3)
n=—oo n=—oo
L (n+ 1)+ A2
= = _ m 1 2 d
), oo DI Ve s e el K
1 3/2 1 —27(a—1/2)A
=3 J (o — U)2m (QTFA(g —a) —2log ( +1e+ Y )) da (3.3.45)

TFA (%_O_)QerQ _J3/2

(2m + 1)(2m + 2)

—27m(a—1/2)A
(o — o)™ log<1+e ) da,

o 14 e 2mA

now using the fact that, for b > a > 0 (see [14, §4.1.2])

0 142 2 —2ma
(n+3)°+0b <1+e >
log | —2-—— | =2n(b—a) —2log | —— | .
2, log ((n +3)% +a? m(b—a) = 2log | T

n=—0u

From (3.3.44)), (3.3.45) and the dilation relation

ga6) = %@i (i) , (3.3.46)

we arrive at (3.3.30]). Besides, using the fact that (see, for instance, [50] §2.733 Eq.1])

T (% _ 0)2m+2

(2m +1)(2m + 2)’

ee}
| faneralo) ds -
—00
we arrive at (3.3.28)) and (3.3.29) from (3.3.30).

Part (viii) From relation it suffices to find the explicit form of éi(f) for
—1 < ¢ < 1. Since C:’i(f) are even functions, we only need to consider the case 0 < & < 1
(recall that the values at £ = 0 were computed in the proof of (vii)).

We consider first the majorant. Recall that G (k) = Fa(k) for all k € Z and (G})'(k) =
F) (k) for all k € Z\{0}. Note also that (G£)'(0) = 0, since G is an even function, and

that F5 (0) = 0 except in the case a = % and m = 0, for which Fa is not differentiable at
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x = 0. Our starting point is a result of Vaaler [89, Theorem 9] that gives us

( 1 — |f| 2 X o~ 2mike 4+ oo sgn(f) kz (G+)/(k:) o 2mikE
L - (3.3.47)
= (1—1[¢]) Z a (k) e~ 2mike + sgn Z F\ (k) e™2mikE,
k== k#0

Using (3.3.32)), the first sum in (3.3.47) is given by

m .
Z FA(I{Z) 6727rzk:£

o0
: _ ] d —2mikE (3,348
3 (3] o (s ) ) e a

1 F/? 5 e k2 + A2 ik
= (a—o)™ log e 2™k ) da,
2Js kzoo k2 + (o — 1)2A2

where the use of Fubini’s theorem is justified by the absolute convergence of the sum on the

left-hand side (which follows by (3.3.38))). The inner sum in (3.3.48) can be evaluated via
Poisson summation applied to the Fourier transform pair

b2 N —27léla __ —27|&[b
h(z) = log (%) and h(¢) = & c (3.3.49)

k

€l

for real numbers b = a > 0 (see [14, §4.1.2]). We then arrive at

0

Z FA(k) e—?ﬂik{

k=—0
1 J‘S/Q om o) 6—27r|§+k\(o¢—1/2)A _ 6—27r|§+k:\A
S o — o da 3.3.50
2 ( ) kEj €+ k| ( )

o ——»

1 & 32 oy, [ e=2rIEHRI(a=12)A _ o—2rle+klA
_ = _ m dao.
5 X f (@=0) €+ K] “

k=—o0 V7

We shall use the following indefinite integral [50], §2.321] in our computations

an e dr=—e" <Z ae(fl) :n”_£> . (3.3.51)

£=0

Using (3.3.51)) in (3.3.50) we get

0¢]

Z FAU{?) e—27rik§

k=—00
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0 —27[etk|(0—1/2)A (2m)!
; € + K| <<27r\£ + k[A)2mr

DN |
By

- 6727r\§+k|(3/270')A 221 6'(2?) (é _ 0_)2m 4
i (2ml€ + K[ A)FHT 2

1 & 727r|£+k:\A ol
-5 ; Em T DE TR 2 ) (3.3.52)
_ 1 i 1 (2m)! e 2m|é+kl(0—1/2)A _2m+1 v e 2mE+k|A 5 _U)2m+1 J
2, &2 KL (27[€ + k[A)2m T = (27|€ + K|A)7 12 ’
with ’yjz% for0<j<2m+1.

We now evaluate the second sum in (3.3.47)). Using (3.3.32]) we have
Z F/A(k‘) e—27rik§

k+#0
3/2 k k )
. 2m —2mik€
= — — d 3.3.53
kgo (JU (a=o) <k2 +A2 B2 (a— ;)2A2> 0‘) ‘ (3:3.53)

Jﬁﬂ i y - b 2mikg
= (a— o)™ E - e T | da,
o L\ RE AT B2 4 (o — 5)2A2

where the use of Fubini’s theorem is again justified by the absolute convergence of the sum
on the left-hand side, which again follows by (3.3.38)). The inner sum in (3.3.53) can be

evaluated via Poisson summation applied to the Fourier transform pair

T T

h(x):x2~l—a27:r:2+b2

and ’5(5) = —mi sgn(§) (e_%ma - e_%mb) (3.3.54)

for real numbers b > a > 0 (see [14] §4.1.2]). We then arrive at the expression

2 F/A(k,') 6—27rik§

k#0

3/2 0
_ ﬂ_ij (Oé . O_)Qm ( Z Sgn(§ + k) (6727r(a71/2)|£+k\A _ 627r|£+kA)> da

g k=—0o0
o0 3/2
— i Z Sgn(§ + k)j (a . O_)Qm (6727r(a71/2)|£+k\A _ 6727r|£+k\A) da.
k=—0 g

The latter use of Fubini’s theorem can be justified by the absolute convergence of the
double integral (one can explicitly sum the exponentials in geometric progressions). In the

case 0 = % and m = 0 one has to be a bit more careful and group the terms k and —k — 1,

for k = 0, to have convergence. Using (3.3.51]) we get

Z F,A(k> 6—271'1']6{

k#0
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= i Z sgn(§ + k)

(2m)! e 2mlE+hl (0 -1/2)A
(2m|€ + k|A)2m+l

k=—o0
o -
o 2mlE+KIA 3 _\2m—{
e G0 @as
. © 6—27r\§+k|A 5 omtl
0 _on o—1/2)A 2m41 __on|e+k|A )
. (2m)! e=27le+kl(0=1/2) ;e 5 om1—j
e (B Rt )
P (27|€ + k|A)2m+ =) (27[€ + K|A)I
(2m)!

From (3.3.47)), (3.3.52) and (3.3.55)) we find, for 0 < & < 1, that

@+ (6) _ 1 i E+1 (2m)' 6727T‘§+k2|(0'71/2)A - 2m+1 i 6—27r|§+k:\A 3 O_)QmJFl*]'
2,2 Jev k| @ui+ FAPTT 2 (anle + KA) 2 '

The change of variables leads us directly to the expression for the majorant.

The proof for the minorant follows along the same lines, starting with Vaaler’s relation
[89, Theorem 9] and the fact that Gx(k + 3) = Fa(k + 3) and (Gr)'(k+ 1) = FA(k + 3)
for all k € Z, we have

~ & ikl 1 & —omi
GA( 1_ |£| Z 2m (k+2)f+% Sgn Z GA k?-}- ) 274 (k+ )3

S —2mi(k+1 1 & —omi(k+1
=(1-1¢) Z Fa(k+3 2“<’f+z>5+2—msgn(g) N FA(k + 5y e 2milhae,

— k=—00

One now uses Poisson summation with the pairs (3.3.49) and (3.3.54) to derive that

0
2 FA(k‘ + %) 6—27ri(k+%)§

k=—00
1 (32 ) - (k+1)%+ A2 il
_ = N m —2mi(k+3)€
2 L (a—0) ) > OOlog (k+ 12+ (a— 1)zaz )¢ ) da

1 (32 ) 0 e~ 2mlE+kl(a—3)A _ —2mE+k|A
== a—o) ™ —1)k do
;| @-o X T

and

o
Z F/A(k} + %) 6727ri(k+%)£

k=—o0
_ 3/2 2m > (k—’_l) (
_L (o =0) <kz ((k+§)22+A2_(k+§)2

=—
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3/2 ) 0 )
—mi|(a-o ( D (~1)*san(g + k) (2o Dlers e%lwm)) do

a k=—w

The remaining computations are analogous to the majorant case. This concludes the proof

of the lemma. 0

3.4 The sum over prime powers

The idea for our proof of Theorem [3.1] in the case of odd n, is to replace the functions
fn,e in our representation lemma (Lemma by appropriate majorants and minorants,
apply the Guinand-Weil explicit formula (Lemma , and then asymptotically evaluate
the resulting terms. Our majorants and minorants of exponential type 27A, denoted here

by mi, are even functions, and hence the resulting sum over prime powers will appear as

L3 A g (M) costetogn).

n=2

The purpose of this section is provide a detailed qualitative study of this expression. In
order to ease the flow of the proofs below, we collect several auxiliary calculus and number

theory facts in two appendices at the end of the thesis.

3.4.1 The case of the Poisson kernel f_;,

Recall that in Lemma [3.9) we denoted the Poisson kernel by hg(x) := f_1 ,(x)

by introducing the parameter g = o — %

_ _B
- B2+$27

Lemma 3.11 (Sum over prime powers I). Assume the Riemann hypothesis. Let 0 < § < %
and A = 1, and let mi = m;,—rA be the extremal functions for the Poisson kernel obtained
in Lemmal3.9. Then

Ly A\%)mz (1();”) cos(tlog )

n=2

_98)r 1 2 olig 2 (3.4.1)
NS ST S e
(=) () 5
and
1 A(n) ._ (logn
7Tn>2\/ﬁmA< o >cos(tlogn)
~ (3.4.2)

g 23 e(1=28)7A _ 2%_5(% +ﬁ)2 i 2%+ﬁ€—47rBA(% _5)2
(3= 62) (1 + em2m02)”

+0 (BAY).

Proof. Let x = €™ and note that the sums in (3.4.1)) and ([3.4.2)) only run for 2 < n < .
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Using the explicit description for the Fourier transforms T/ﬁi given by (13.3.4]) we get

1 Z (102g >cos(tlogn)

n>2

(3.4.3)

e—QWﬁA Z A(?’L) <627TBA nB

= - cos(tlogn)
(]‘ + 6_27rﬂA)2 n<e2mA n1/2 nﬁ EQﬂﬂA)

In the case of the majorant we use that cos(tlogn) > —1 in (3.4.3)), together with Appendix
B.4, to get

logn e 2mBA A(n) [€e*mBA nf
— > - —
E < o )cos(t logn) > 67271'/3’A)2 E 12 B o2mBA

TL>2 (]- - n<e2mA

e—2mBA (25677A _91/2-8 2#[3A( + 3) 21/2+,86—27rm(% _ 5)2

(1- e—27r,BA)2 — B2
+0 (BemAat) )

93 e(1-28)7A _ 91/2—8 4 21248 —4mBA (L _ g)? 4
_ 2 (3.4)" + 220 A (; - ) o (%),
(k=) (1~ 252

where we have used the fact
1 - 1 « 1
(1—e2m88)% = (1—¢8)” B

In the case of the minorant we use that cos(tlogn) < 1 in (3.4.3]), together with Appendix
B.4, to get

. log 1 e—2mBA A(n) e2mBA nB
- < — -
Z ( o )COS(tlog n) < (15 22 > W2 \ pB e2nbA

TL>2 n<627rA

e—2mBA 25€”A _ 21/2—,862776A(% + 5)2 + 21/2+ﬁe—27r,8A(% _ 5)2
)

(1 + e—27BA 2 % _ 52
+0 (BemAat) )
(1-28)7A _ 91/2-B(1 1/248,—4mBA (1 _ 3)2
:2ﬁ€ —2 (2+ ) +2 26 (2 B) +O(5A4)
(3= 52) (1 + 202
This proves the lemma. ]

3.4.2 The case of fy,,41,, for m >0

We now consider the sum over prime powers applied to the extremal functions of expo-
nential type 2rA for the even functions fo;,+1,, defined in . The next lemma collects

o1



the required bounds for our purposes.

Lemma 3.12 (Sum over prime powers II). Assume the Riemann hypothesis. Let m > 0,

% <o<land A =1. Let gi = 92im+1,a,A be the extremal functions for fom41, obtained

in Lemma[3.10, and let ¢ > 0 be a given real number. In the region
TA(l-0)?>c

we have

(3.4.4)

e
o(l—o) (2rA)2m+2 ™\ (1= g)2AZnF3 |

Proof. Again we let = ¢*™® and note that the sum in (3.4.4) only runs for 2 < n < .
Our idea is to explore the formula (3.3.31]). First observe that, for 0 < £ < A, we have

’k-+>1’ 2m+-1 Wﬁ642ﬂk+kA|

2 €+ kA 2 (27[€ + kA]) (-0

k+#0 Jj=0

) iy €A, (3.4.5)

Using (3.3.31)), (3.4.5)) and the prime number theorem (it suffices to use the weaker estimate
Dn<e %Z) « z/?) we find that

“Ognkam+2

n © 6_‘ O nxk|(g— /)
= F(2m)! Z An) ( Z ED*(k+ e ” > cos(tlogn)
k

< =—00
. 2%17' (§ _ U)2m+1fj Re Z A(n) L0 (:L"_l/2)
- = J\2 = n3/2+it(10g n)i+l m

- o~ log na*|(0—1/2)
~Fem) Y] Al ( 3 (£1)* (k + 1) eIl v ) cos(tlogn) + Op(1).
k=—o0

k[2m+2
Zon | log nak|2m+

It is now convenient to split the inner sum in the ranges £ > 0 and k£ < —2, and regroup

them as

(log nak)2m+2 (ngk)o—1/2

= F(2m)! Alm) i (il)’“( kil

k+1
_ (ioe zk+2)2m+2(zk+2)a—1/2> cos(tlogn) + Oy, (1).
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Using Appendix B.3 and ([7.1.2)), we isolate the term k£ = 0 and get

;% ;A\%)% (102g7r”> cos(t log n)
- ( A(n) A(n)

n? (log n)2m+2 o p20-1 nl=7(2logz — logn)2m+2

= F(2m)! ).

n<x

+ Omee ((1 = a>$<1lo; x>2m+3> |

Observe that the terms

) cos(tlogn) (3.4.6)

A(n) A(n)
ne (log n)2m+2 x?o‘—l n1—0(2 log T — log n)2m+2

are all nonnegative for n < x, and we can get upper bounds in (3.4.6) by just using the

trivial inequality

—1 < cos(tlogn) < 1. (3.4.7)
Estimate (3.4.4) plainly follows from (3.4.6]), (3.4.7) and Appendices B.1 and B.2. O]

3.5 Proof of Theorem [3.1] in the case of n odd

In this section we prove Theorem [3.1]in the case of odd n > —1.

3.5.1 The case n = -1

Here we keep the notation 8 = o — %, with 0 < 8 < % To further simplify notation, let
mi = m% A be the extremal functions for the Poisson kernel obtained in Lemma w From
Lemma 3.8 and Lemma [3.9] we have

1 t 1 _ 1
< 8_1(o, t) (3.5.1)

1 1

For a fixed t > 0, we consider the functions ¢% (2) := mx (t—z). Then ?i(f) = Mmx (—&)e2mict
and the condition |¢% (s)| « (1 + |s|)~2 when |Re s| — oo in the strip [Im s| < 1 follows from
(3.3.6), (3.3.7), (3.3.8) and an application of the Phragmén-Lindel6f principle. Recalling
that ﬁzi are even functions, we apply the Guinand-Weil explicit formula (Lemma and
find that




L J_OO m (L — 2)Re = (1 + “”) dz (3.5.2)
)

We now proceed with an asymptotic analysis of each term on the right-hand side of (3.5.2)).
1. First term: From (3.3.7)) and (3.3.8)) we see that

1 1
‘mZ(t—m) +mZ<t+2i>

1 1 BAZe™A
Nt = N — . .54
mA<t 2i>+mA<t+2i>‘<< T+ AL (3.5.4)

2. Second term: From (3.3.4) it follows that

A2e7rA
& B0+ A0 (3.5.3)

and

~ PR 4 g—TRA 1
and
o eﬂﬁA o e—7r,8A ]

3. Third term: Recall that the Poisson kernel hg(z) = ﬁ defined in (3.3.1]) satisfies

§°_ hg(z) dz = m. Note also that for 0 < 8 < 3 and |z > 1 we have

15} 1
h = < . 5.
Hence, from (3.3.6)), we get
0
0< f mx () log(2 + |z|) dz
—OOOO
< f hg(x)log(2 + |z|) dz (3.5.8)
—00

1
_ J‘ B () log(2 + |2]) dx-+‘f hs () log(2 + |2) dz = O(1).
-1 |z|=1

From (3.5.6)), (3.5.7)), (3.5.8), and Stirling’s formula it follows that

1Jw “(t—m)Re (L d-—lfw (@) (log + O(log(2 + [2]))) d
5 _OomA z)Re {7+ 3 T =g _OomAx og og T x

logt ePA _ g=mhA
_ 2<@m+6mm +0(1). (3.5.9)
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Similarly, using (3.3.6) and (3.5.5|), we have

1JOO +(t—:1:)Re£, }—FE dxlfoo mk (z)(logt + O(log(2 + |z]))) d=
or ) A r\a7 2 “on) A & &

logt [e™A 4 e=mPA 1

- (ewm_ewm +o(5) G310

4. Fourth term: This term was treated in Lemma [3.11]

Final analysis (lower bound): Combining the estimates (3.5.1)), (3.5.2)), (3.5.4), (3.5.6),
(13.5.9), and (3.4.2)) we derive that

logt e 2mBA
> —
571(0-7t) [ T <1+€—27T,BA

2/3 e(l*Qﬁ)TrA . 21/275(% + 6)2 + 21/2+56747rﬁA(% . 5)2
(- )1+ e2A)

(3.5.11)

AQ TA
40 (%) + O(min{1, BA}) + O(3A%).

Note that in deducing (3.5.11)), the term —(1/27)logt in (3.5.1) cancels with part of the
leading term in (3.5.9). We now choose wA = loglogt in (3.5.11]), which is essentially the

optimal choice. Recalling that § = o — %, this choice yields

~ (logt)*~2 1 (20 — 1)
Sl = 0 ((H(log N2) o o) (1+ (log t)1‘2°)2>

217952 — 29 (1 — 0)? (log t)> 4 ST
R — 0)(1+ (log £)1—27)? +0((o — 3)(loglogt)"). (3.5.12)

(log t) 2—20

T ((1+<1o; niee) fg = 3) +0((7 =~ Plloglogt)’).

In the last inequality we only dismissed nonnegative terms. Note the fact that 2177 02 >
27 (1 —0)?, for 3 < o < 1. Finally, notice that in the range (3.1.2) we may use (7.1.2) to
transform the error term of (3.5.12)) into the error term on the left-hand side of ([3.1.3]).

Final analysis (upper bound): Combining the estimates (3.5.1)), (3.5.2)), (3.5.3), (3.5.5)),
(3.5.10]), and (3.4.1)) we derive that

logt e 2mBA
571(0', t) < [ T <1 _6727TBA

26 €(172[3’)71'A _ 21/27ﬁ(% + 13)2 n 21/2+,6’ef47r,3A(% _ 6)2
"1 #) 0 -eT

“o(5issy) -0 (3) o (5)
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We now choose 7A = loglogt in (3.5.13)), which again is essentially the optimal choice.
Recalling that § = o — %, this yields

(logt)?~27 1 (20 —1)
S-ilovt) < = <(1 — (logt)1=27) i o(l—a)(1- (logt)12")2>
1

B (217902 =27 (1 — 0)? (log t)>~) Lo (loglogt)*
mo(1 — o) (1—(logt)1—27) 5

T3
(logt)2=2c 1 (20 — 1) (loglogt)*
S T <(1 — (log t)'=27) " c(l—o)(1— (logt)1—20)2> vo ( o—3 ) ’

where we have just dismissed a nonpositive term in the last inequality. Observe that

(3.5.14)

1
(1 — (log t)1_20)2

Therefore we can rewrite (3.5.14) as

(log1)2-2 1 o
Salot) < ((1 — (gt ) o(i - ">>

(logt)*—27 (log log 1)’
"o <(U - %)(1 - U)10glogt> +0 (a—é) .

Again, in the range (3.1.2]) we may use ((7.1.2) to transform the error term of (3.5.15) into
the error term on the right-hand side of (3.1.3]). This concludes the proof of the theorem in

this case.

(log t)l—Qa « 1 . 1
(1 - (logt)1=20)? (0 — 3)*(loglogt)? ~ (0 — 3)*(loglogt)

1—

(3.5.15)

3.5.2 The casen>1

Let n = 2m + 1, with m > 0. For % <o<land A =1, let gi =92im+10A be the
extremal functions for fa,, 11, obtained in Lemma

Case 1: m _even. In this case, from Lemma [3.8 and Lemma [3.10] we have

1 3 2m+2 1
- (3 _ log t —
o (2m + 2)! (5-0)"" " log 7(2m)!

1 3 2m+2 1 B
S om0t oy 20— )+ On(1),

D98 =) + On(1) < Samra(ot)
! (3.5.16)

As observed in the case of the majorants for the Poisson kernel, it follows from (3.3.25)),
(13.3.26) and the Phragmén-Lindel6f principle that we can then apply the Guinand-Weil
explicit formula (Lemma to the functions z — gi(t — z). This yields

T ey R + AN 1y
;%(t 7)—{9A<t 5; | T9altt5; 5~ Ix(0)log 7
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1 (© . ' (1 iz
— (t— —(=+=)d 5.1
+2WJ gna( x)ReF<4+2> x (3.5.17)

—00
A(n) - (logn
vn I\ Ton

n=2

1
T

> cos(t log n).

We again proceed with an asymptotic analysis of each of the terms in the last expression.
1. First term: The estimate (3.3.26)) implies that

1 1 A2emA
+ +
L e — )<, ———. 5.1
gA( 21)+9A< +2¢> “m AL (3:5.18)
2. Second term: From (3.3.27)), it follows that

9% (0)] <y 1. (3.5.19)

3. Third term: Using (13.3.25)), (3.3.30)), and Stirling’s formula we find that

LT ke ore T(+ 5 ) dr=on [ k) (togt + Oltog(z + 1a)) @
o ) JIAN TR T Ty ) T g ) 9alLes oBlE ) qx

—00

3 _ \2mt2 3/2 - —2n(a—1/2)A
_ logt < m(3-0) L (0= 0)2m 1og (1 +e ) da> (3.5.20)

or \ 2m+1)(2m+2) A ), 1T e 2mA
+ O (1).
4. Fourth term: This term was treated in Lemma [3.12]

Final analysis (lower bound): We combine the leftmost inequality in (3.5.16)) with
estimates (3.5.17)), (3.5.18]), (3.5.19)), (3.5.20)), and (3.4.4)) to get

log t 3/2 - 1— e—27r(a—1/2)A
Soni(0:0) 2 Gyioeag ), (@m0 os | T ) do

B (20. _ 1) 6(2—20)7rA
mo(1— o) (2rA)2m+2 + Om(1) + Om

6(2—20)71'A
+ Om»C (1 _ 0)2A2m+3

AQeﬂ'A
T i)

3/2
= @l;g;% (a—0)*™ log (1 — e‘QW(O‘_I/Z)A) da
m)! 27 -
(20. _ 1) 6(2—20)7TA AQeﬂA
- m 1 m
mo(1— o) (2rA)2m+2 +On(1)+0 1+ At
o(2-20)7A
+ Om,c (]__O-)W . (3.5-21)
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Observe that

©0]
J (o — 0)*™ log(1 + 672”(0‘71/2)A) da

« JOO (a o %)2m 6727r(a71/2)A do
3/2

3/2 (3.5.22)
0 e—ﬂ'A 6(1—20)7TA

= f a?me20™A do &4,
1

<
A2m+2 T A2m+2

We now choose mA = loglogt. Using (3.5.22) and ((7.1.2)) in (3.5.21)) leads us to

o]

logt
(2m)!12m2A ),

B (20. _ 1) 6(2—20’)7rA 0 e(2—20)mA
mo(l — o) (2rA)2m+2 "\ (1 —o)2A2mE3 |

Sam+1(0,t) > (@ = 0)*™ log (1 — e 207 1/24) dq

(3.5.23)

From monotone convergence and (|3.3.51)) we have

o0 0 L o—2km(a— 1/2)A
f (a—0)* log (1 — 672”(0‘*1/2”) da = —J a—o0) Z da
o o k=1
o 1 2m ,—2km(a—1/2)A
Z i), e dov (3.5.24)
(2m) 0 e*2k‘7T(O’*1/2)A
- 2m+1 2m+2
(2w A)2Zm+ = ke
Plugging (3.5.24)) into (3.5.23) leads us to
1 (logt)?~20 | & 1 20 — 1
> —
Sam+1(0,1) (22m+2ﬂ—> (log log t)2m+2 ; 1)2m+2(log t) 20—k + o(1-0)

+ O (10gt)2 20
"¢\ (1 —0)2 (loglogt)2m+3 |

Final analysis (upper bound): We combine the rightmost inequality in (3.5.16) with
estimates (3.5.17)), (3.5.18)), (3.5.19), (3.5.20)), and (3.4.4) to get

log ¢ 3/2 1 —2m(a—1/2)A
Som+1(o,t) < ogj (a —a)*™ log ( e da

(2m)!2m2A ), 1+ e 2rA

(20 _ 1) 6(2720')7rA A2emA
* mo(l— o) (2mA)2m+2 Om(1) + Om 1+ At

6(2—20)7rA
+ Om,c (1 _ U)2A2m+3

3/2

logt
< - - @@
(2m)! 2m2A ),

(20. _ 1) 6(2—20)7TA A2emA
* mo(1— o) (2mA)2m+2 + Om(1) + Om 1+ At
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(o — 0)*™ log (1 + eiQﬂ(afl/Q)A) do




o(2-20)TA

We now choose mA = loglogt. Using (3.5.22) and ([7.1.2)) in (3.5.25)) leads us to

0

logt m “om(a—
ng.:,_l(O', t) < W (a - 0')2 log (1 +e 2m( 1/Q)A) do
(20. _ 1) e(2—20)TA e(2—20)TA (3526)
Onmel ————5—=1-
to(l—o) @raypmre Ome | (T 5)2azm+s
As in (3.5.24)), now using dominated convergence, we have
0 O 1\k+1 —2kmw(c—1/2)A
2m —2n(a—1/2)A (2m)! (=1)""e
f (a—0)™ log(1+e (a=1/2) ) da = NS 122 . (3.5.27)
o k=1

Finally, plugging (3.5.27)) into (3.5.26)) gives us

1 (logt)?=20 = (=1)* 20 — 1
m 1) <
Som+1(0,1) <22m+2 7r> (loglog t)2m+2 ];0 (k + 1)2m+2(logt)(20-Dk ~ o(1 — o)

N O (log t)2720’
"¢\ (1 —0)2 (loglogt)2m+3 |

Case 2: m odd. In the case of m odd, the roles of the majorant gz and minorant g, must
be interchanged due to the presence of the factor (—1)" in the representation lemma ((3.2.4).

The remaining computations are exactly the same as in the case of m even.

This concludes the proof of Theorem in the case of odd n.

3.6 Proof of Theorem [3.1] in the case of n even

In this section we prove Theorem in the case of even n > 0. Recall that for integer

j = 0 we have defined

o0 2k
Hi(z) = -,
/ ];O(k+1)ﬂ

and for odd n = —1 we have defined

1 n 9% 20 —1

Throughout this section let us write

B (logt)Z*Q"

(log t)2720’
d r(1) = .
and 1o (t) (1 —0)?(loglogt)”

bro () = (g Tog oy
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3.6.1 The casen =20

We now consider % < o < 1. To treat the case n = 0 we proceed with a variant of the
method presented in Section in which we only use the lower bound for S_;(o,t) since

this is stable under the limit ¢ — %Jr.
Let ¢ > 0 be a given real number. In the region (1—0)? > logc{iigt we have already shown
that
—C1, (1) 2,6 (t) + Oc(r3,0(1)) < S1(0,1) < CF (1) Lo, (t) + Oc(r3,o (1)), (3.6.2)
and
O (1) foo(t) + Oulri o (1)) < Soi(0,1). (3.63)
Error terms estimates. Let (o,t) be such that (1 —o)? > Toglog7- Observe that, in the

set {(o,p);t—1 < p < t+ 1}, estimates (3.6.2) and (3.6.3) apply (note again the use of

the constant ¢/2 instead of ¢ in the domains of these estimates). Then, by the mean value
theorem and (3.6.3)) we obtain, for 0 < h < 1,

S(o,t) = S(o,t —h) = hS_1(0,t,) = —h CZy () Lo,o(ty) + h Oc(r1,6(t}))

(3.6.4)
- _h C—Lo—( i) oo (th) + hOc(r14(t)),

where ¢} is a suitable point in the segment connecting ¢t — h and ¢. From the explicit

expression

(1) = Oy 4 (1) Lo, (1) = = ( — (10;)1_20 " 02((17:;> log £)22

we observe directly that

1
90 <

and hence, by the mean value theorem, that

|C71 o (8) Loo () — CZy () Lo.o ()] < 71,4(1). (3.6.5)

From (3.6.4)) and (3.6.5) it follows that

S(o,t) = S(o,t —h) = =hCZy ,(t) Lo (t) + hOc(r1,6(t)). (3.6.6)

Integrating and optimizing. Let v = v,(t) be a real-valued function such that 0 < v < 1.
For a fixed t, we integrate (3.6.6)) with respect to the variable h to get

S(o,t) f S(oyt—h) dh — = (Lh dh) O o (1) Lo (t) + = (L h dh> Oclr1.(t))

1% v
1%

= ;(51(0, t)— Si(o,t —v)) — 3 O 5 () o0 (t) + Oc(v o (1)).
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From ((3.6.2)) we then get

S(o,t) > %[— C o (8) o, (1) = Cf o (t = ) o, (t = ) + Oulry,o (1)) + Oclrs o (t — y))]
- g O 0 (1) Lo (t) + Oclvrio (1)) (3.6.7)

TS’Z(t)> + OC(V Tl’a(t))7

v

- _ [Clj(,(t) + Cffa(t)] %fzyg(t) -3 7, () oo (t) + O (

where we have used (|3.6.16)) in the last passage.

We now choose v = l(j‘g"lgtg) ; in (3.6.7)), where A\,(t) > 0 is a function to be determined. This

yields

o
S(O’7 t) > — [(Cl,a'(t) + Cia(t)) )\Ul(t) n —12,0'(t)

+0, (?:é?) + 0o (t) r2.0 (1))

)\U(t)] 0 5 ()

Choosing A, () in order to minimize the expression in brackets, we find that

_ + 1/2
Ao(t) = (Q(Cl’gc(t)f (f)l"’(t))> . (3.6.8)
This leads to the bound
S(ovt) > ~[2(Crs (1) + O, 1) €, 0] 000
(3.6.9)

Finally, using the trivial estimates

% (; N 02(‘;:;)) <07, (1) < % (1 4 02((1’:;)) ,
ﬁ (1 + 02((;:(1;)> < Cp,(t) < ﬁ (C(2) + :g:;) ;

1 /3 20 —1 1 20 —1
(s 2 <o ()< — 1+ 22— ),
47 (4 * o(1 —0’)> Lo (?) 47 < * J(l—O’))

one can show that A\, (t) defined by (3.6.8) verifies the inequalities

and

< A (1) <2,

which shows that indeed 0 < v < 1 and allows us to write (3.6.9)) in our originally intended
form of 12
S(0,0) 2 = [2(C1,(0) + Cf, ) €1, (0] £1.0(0) + Oulra (1),
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The proof of the upper bound for Sy (o, t) follows along the same lines. Instead of (3.6.4)),
one would start with the following inequality, valid for 0 < h <1 and ¢} € [t,t + h],

S(o,t+h) —S(o,t) = hS_1(0,ty) = —hCZy () loo(th) + hOc(r1,6(t}))-

3.6.2 The casen > 2

Let % < o < 1. In this subsection we show how to obtain the bounds for S, (o,t)
from the corresponding bounds for S, _1(o,t) and S,,+1(0,t). This interpolation argument
explores the smoothness of these functions via the mean value theorem in an optimal way.

This extends the material that previously appeared in Section [2.6

Let us consider here the case of n/2 odd. The case of n/2 even follows the exact same
outline, with the roles of C;f,(t) and C, ,(t) interchanged.

Let ¢ > 0 be a given real number. In the region (1 — )% > o/2

> foglogi We have already
established that

_C;+1,a(t) lnt2,0(t) + One(rni3,0(t)) < Snti1(o,t)

N (3.6.10)
< Cn+1,a (t) bnt2,0(t) + One(rn+3,0(t)),

and

_C;—l,a(t) lno(t) + One(rns1,0(t) < Sp—1(0,1)

4 (3.6.11)
< Cn—l,a (t) bn,o(t) + One(rnt1,0(1)).

Error term estimates. Let (o,t) be such that (1—0)? > Toglogi- Observe that, in the set

{(o,p); t—1 < p < t+1}, estimates (3.6.10) and (3.6.11]) apply (note the use of ¢/2 instead
of ¢ in the domains of these estimates). Then, by the mean value theorem and ({3.6.11]) we

obtain, for —1 < h < 1,

Sn(o,t)=Sp(o,t —h) = hS,_1(0,t})
< (xn=0 [h Co_y o (8) lno (1) + Xn<o [h] Cly 4 () ln o (7))
+ 17| On e(rns1,0(t])) (3.6.12)
= (xn>0 [P Cy_1 o (8) bno (th) + Xn<o |h] oy o (1) €0 (7))
+ 1| One(rns1,6(1)),

where t7 is a suitable point in the segment connecting ¢ — h and ¢, and x>0 and x,<o are
the indicator functions of the sets {h € R; h > 0} and {h € R; h < 0}, respectively. We
would like to change ¢} by t in the last line of (3.6.12). For all £ > 0 let us define

1 (10g t)272o (log t)(k+1)(172o)+1

ful) = (log t)2o—Dk (loglog t)* (log log t)™
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We shall prove that
’Cr:—l,o(t;:) gn,a(t;’;) - C;—l,a(t) gn,o(t)’ Cp Tnt1,e(t)- (3.6.13)

Using the mean value theorem, we have that

1 & 1
| lcrth lno(t)—C_ 10()€n,o(t)|<<n 1-0) ZZ: k+1n|fk(t2)_fk(t)|

1
- (17|th |Z k+1 | fi (5 1) (3.6.14)
« 1 i (k+1)(20 — 1)+ 1)

"(1-o0) = (k+ 1)ty (logty | )(’”1)(2‘7_1)(loglogt;';k)"’

where, for each £ > 0, ¢}, is a point that belongs to the segment connecting t; and t.

Observe now that

i ((k+1)(20 — 1) + 1)
= (k+ 1)t} (logty )(’”1)(2"*1)(loglogt27k)”
i (k+1)(20 — 1)+ 1)
<n * k+1)(20—1 n
= t (log ty L) EFDC=D (loglog t) (3.6.15)
1| o 20 — 1 1
E 2 k + 1 n—1 1 (t _ 1))(k‘+1)(20‘—1) + E
izo ( (log
1
& : & lpi1,a(t)

From (3.6.14)) and (3.6.15]), we arrive at (3.6.13)). In a similar way we observe that

G o (th) tno(th) — Coy olt ) bno(t)| <n Ta1,0(t)- (3.6.16)

From (3.6.12)), (3.6.13), and (3.6.16]) we obtain

Sp(o,t) = Sp(o,t —h) < (Xh>0 A C;—l,a(t) ln,o(t) + Xn<o || C;—l,a(t) en,c(t))

(3.6.17)
+ |h| On,c<rn+1,a(t))'

Integrating and optimizing. Let a := ay(t) and b := b, »(t) be real-valued functions,
that shall be properly chosen later, satisfying 0 < a,b < 1. In particular, we will be able to
choose them in a way that a + b = 1 at the end. Let us just assume for now that a + b >
in the following argument. Let v = v, ,(t) be a real-valued function such that 0 < v < 1.
For a fixed ¢, we integrate with respect to the variable h and find that

1 br

Sp(o,t) < Sp(o,t —h) dh

(a+b)v J

1 bv
[ j (thso |1 €51 o () + xneo |11 €y o (1) dh} fo (1)

Tt b )
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1 Uby Ih| dh] One(rnt1,0(t)

Taror ),

= (a~|—1b) [SnH(a, t+av) — Spii1(o,t — bV)]

b2C7—:_ 1U(t) 2C7: 10( )
2(a+b) ] Vo (8) + Onevrnt1o(t)).

_|_

Using (3.6.10) and the same error term estimates as in (3.6.13]) and (3.6.16)) we derive that

1
Sp(o,t)< @t b [C:H,o (t+av) bpo(o, t+av)+C,q (t=bv) by yo(0,t—bv)

+0, c(rn+3 U(t+alj)) + On,c(rn+3,a(t - bV))]

21+ alC~
|G 10(2t()a+b)0" Lo(l >] Vb (8) + One(v g1 0(£) (36.18)
C+ +C b20+ 207
_ "HG(&W el | 1y o)+ | St O el )]uen,(,(t)
+ One (2220 4 0, 1)

Choosing v = 1’(\) ’éfog 7 in (3.6.18)), where A, (t) > 0 is a function to be determined (recall

that we required 0 < v < 1), we obtain

CTJLF+1 a'( ) C;Jrl cr( ) 1 bQC; 1 o’(t) + azorjfl cr(t)
< . . n,o n o
Sn(o,t) { @D o) + 2D Ao () ¢ lni1,0(t)
rn+2,a(t)
+ On.c ()\M @ ) + Onc(An o (t) Tny2(t)).
We now choose A, »(t) > 0 to minimize the expression in brackets, which corresponds to
the choice
C:{Jrl a'( ) CT:Jrl o'( ) i b2C; 1 o‘(t) + (1207771 o(t) e
Ano(t) = . . (3.6.19)
’ (a+b) 2(a+b)
This leads to the bound
CHy () + Coy (1) (B2CF +ac )]
Sn(U, t) <2 ( n+1,a( ) n+1,a( ))( n— 10( ) n—l,a( )) €n+1g(t)
2a+bp (3.6.20)

+ On,c <T§\Ziﬁ(t()t)> + On,c ()\n,cr (t) rn+2,o (t)) .

We seek to minimize the expression in brackets on the right-hand side of (3.6.20)) in the

variables a and b. It is easy to see that it only depends on the ratio a/b. If we set a = bz,
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we must minimize the function

(CF 1o (@) + Coyy () (G () +22C (1) ]

2(x + 1)2

W(zx) =2

Note that C*

n—1,0

(t) > 0 and C*

1,0 () > 0. Such a minimum is obtained when

T = C;—l,a(t)/crj—l,a(t% (3621)

leading to the bound

— _ 1/2
C;+1,o(t) + C’rL—i—l,U(t)) C:—l,a(t) Cn—l,o(t) /
€n+1,o(t)

Sp(o,t) < [2(
Mol C () + oy (1)

(3.6.22)

o (W) T One G (1) Ts2,0(8))

We may now set a +b = 1. From (3.6.21) we then have the exact values of a and b and
expression (3.6.19)) yields

N () — 2(Crry o (1) + Crrpy o (D) (CF 4 (1) +C;_1’J(t))]1/2_

Co1.,(t)Cry (1)

In the definition of C:f_lp(t) and C:l—;l,a(t), given by (3.6.1), we now use the bounds (for
j=2)

for0 <z <1, and

An,o(t)
loglogt

Therefore, if loglogt > 4, we have v = < 1, as we had originally required. Finally,

expression (|3.6.22]) yields

1/2

2(C 1 () + Crpy (1) Oy (1) Coy (1)
(G +1.00) G, L lnito(t) + One (Tnioos(t),

Cr10(t) +Coy 5 (1)

n—1,0

Sn(aa t) <

which concludes the proof in this case. The argument for the lower bound of is S, (o,t) is

entirely symmetric. This completes the proof of Theorem when n > 2 is even.
This completes the proof of our Theorem [3.1]
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Chapter 4

L-functions and bandlimited

approximations

This chapter is comprised of the paper [A3]. We exhibit upper and lower bounds with
explicit constants for some objects related to L-functions in the critical strip, under the
generalized Riemann hypothesis. This is an extension of Theorem to a family of entire
L-functions. We also include bounds for the logarithm of these functions. In the final part,
we briefly present how to extend the previous result to a general class of L-functions (not
necessarily entire L-functions), but only in the critical line, extending Theorem This is
included in the final part of [A1].

4.1 A general family L-functions

In this section we discuss how to extend the results of the previous chapters to a general

family of L-functions in the framework of [56, Chapter 5]. Below we adopt the notation

Tr(z) = *2T (%) ,

where I' is the usual Gamma function. We consider a meromorphic function L(s,7) on C
which meets the following requirements (for some positive integer d and some ¥ € [0, 1]).

The examples include the Dirichlet L-functions L(s, x) for primitive characters x.

(i) There exists a sequence {A;(n)},>1 of complex numbers (A;(1) = 1) such that the series

oo)\ﬁn
3 At

n=1

converges absolutely to L(s,7) on {s€ C; Res > 1}.

(ii) For each prime number p, there are complex numbers o x(p), a2 x(p), ..., ®4x(p) such
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that | »(p)| < p”, where 0 < 9 < 1 is independent of p, and
(1 @)
L(s,m) = HH (1 - j’ﬂs) ,
p j=1 P
with absolute convergence on the half plane {s € C;Res > 1}.

(iii) For some positive integer N and some complex numbers p1, 12, . . ., ig whose real parts

are greater than —1 and such that {u1, po, ..., net = {1, 12, - - -, Ia}, we define the function

d
L(s,mp) = N*/2 H Ir(s + 1),
j=1

and the completed L-function by
A(S’ 7T) = L(S, 7TOO)L(S’ ﬂ-)a

which is a meromorphic function of order 1 that has no poles other than 0 and 1. The
points 0 and 1 are poles with the same order r(7) € {0,1,..., d}lﬂ Furthermore, the function

A(s,7) := A(5, ) satisfies the functional equation
A(s,m) =k A(1 — s, 7)

for some unitary complex number .

Using (ii), the logarithmic derivative of L(s, 7) has the expression

) B d a;jr(p) ajx(p) !
f(s,ﬂ)——ZZ Jps <1— Jps > logp,

p j=1

where the right-hand side converges absolutely if Re s > 1. This shows that the logarithmic

derivative of L(s,m) has a Dirichlet series

g(s,W) -y A;&”), (4.1.1)
n=2

where A, (n) = 0 if n is not a power of prime and A, (p*) = Z;l:l a;»(p)¥logp if p is prime

and k is a positive integer. If follows that

|Ar(n)| < dA(n) nY. (4.1.2)

In what follows we assume the analogous of the Riemann hypothesis to this family of

L-functions.

'"Except for the assumption r(r) < d, we are in the same framework as [56, Chapter 5], where many
examples may be found.
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Conjecture 4.1 (Generalized Riemann hypothesis). A(s,7) # 0 if Re s # 1.

4.2 Behavior in the critical strip: log|L(o + it,7)| and
Sp(o,t,m)

For t > 0, let N(t,m) denote the number of zeros pr = B + iyx of A(s,m) which
satisfy 0 < B; < 1 and —t < v, < t, counting multiplicities (zeros with ordinate v, = +t
are counted with weight ). When ¢ is not an ordinate of a zero of A(s, ), a standard

application of the argument principle gives

IR
N(t,m) = 7TJtRe f(% +iu, me) du + S(t, ) + S(t, ) + 2r(7w) + O(m),

where
S(t,m) = 1 arg L(X +it,7) = ! f —/(a + it, ) da
) g 2 ) 12 I )

and the term O(m) corresponds to the contribution of the poles of L(s,my) when —1 <
Re (1) < —3. Generically this contribution is equal to —2#{u; : —1 < Re (y;) < —1} —
#{p;j : Re (u;) = —3}. If t does correspond to an ordinate of a zero of A(s, ), we define

S(t,m) =3 gii%{S(t—i-s,w) + St —e,m}.

We extend this definition to the critical strip in the following form. Let n > 0 be an
integer, % < 0 < 1 be a real parameter, and L(s,7) be an L-function in the above setting.
For ¢t € R (and ¢ not coinciding with the ordinate of a zero of L(s,7) when n = 0) we define

the iterates of the argument function as

(0ot 7) = —~Tm {Zm fom o) IL/(a it ) da}. (4.2.1)

T n! J,
If ¢ is the ordinate of a zero of L(s,7) when n = 0 we define

SO(O->ta 7T) := lim SO(U,t + 5,7r) + SO(Uat - 5777).
e—0 2

Using the classical notation, we write Sy, (t,m) = Sn(3,t,7) for n > 0 and So(t,7) = S(t, 7).
Differentiating under the integral sign and using integration by parts, one can see that
Sl (o,t,m) = Sp—1(o,t,7) for t € R (in the case n = 1 we may restrict ourselves to the case

when t is not the ordinate of a zero of L(s,7)). We finally define

/

1_ L
S_i(o,t,m) := ;Re f(a +it, ),

when ¢ is not the ordinate of a zero of L(s, 7). We can see that Sj (¢, 7) = S_1,(t, 7).

As in the case of the Riemann zeta-function, the use of extremal functions allows to
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obtain bounds for some objects related with L-functions. The estimates that we present
here are uniform in all parameters, i.e., only will depend of an especial object called analytic
conductor of L(s, ), defined by

d
H |it + 1] + 3).
For instance, Chandee and Soundararajan [29], under the generalized Riemann hypothesis
(GRH), showed for t > 0

log C(t, )
loglog C(t, )3/

log 2
log |L(4 + it, m)| < <(1 +20)=3= + 0(1)> (4.2.2)
The terms o(1) above are O(logloglog C(t,7)%?/loglog C(t, 7)*%), where the constant im-
plicit by the O-notation may depend on n but does not depend on d or N. Although they
considered explicitly only the case t = 0, their proof can be adapted to the general case.
For n = 0 in (4.2.1)), Carneiro, Chandee and Milinovich [I7], under GRH, showed for
t>0

1 9 log C(t, )
St <>+ 2 +o01 , 423
st < (345 o))t e O (12.3)

and for n = 1, Carneiro and Finder [20], under GRH, showed for ¢ > 0

log C(t, )
log log C'(t, 7)3/4)2°

1Sy (t, )| < ((1 + 219)22—8 + 0(1)> ( (4.2.4)

The terms o(1) above are O(logloglog C(t, m)%%/loglog C(t, 7)%?).

4.2.1 Main result

The main goal here is to extend the above estimates in the critical strip to a family?] of
entire L-functions assuming GRH. We consider an entire function L(s, ) on C which meets

the previous requirements and the following additional conditions:

(ii”) We restrict ourselves to the case ¥ = 0.

(iii") For 1 < j < d we have Rep; > 0.

(iii”) The function A(s,7) is an entire function of order 1 having no zeros in 0 and 1.

To establish the main result for this family of entire L-functions, analogously as Theorem
we recall the function H,, defined in as

:ii
= (k+1)"

2The examples include the entire Dirichlet L-functions L(s, x) for primitive characters x. Similar families
of entire L-functions are studied in [} [59].
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In particular, when 0 < |z| < 1 we have that

log(1 + x)

. = +H(Fx). (4.2.5)

Theorem 4.2. Let L(s,7) be an entire L-function satisfying the generalized Riemann hy-

pothesis. Let ¢ > 0 be a given real number. Then, for % <o <1 andteR in the range
(1 —0)?loglog C(t, ) = c,

we have the following uniform bounds:

(i) For the logarithm,
(log C(t,m))?2° ) (log O(t,7))%>~20 ,
_ 0, < log|L t,
- () loglog C( t ) * (1 —0)?(loglog C(t,))? 0g |L{o +it, )

4, (logC(t,m))?"% d (log C(t,m))*~%
< Mr () e Tog Ot ) +OC<(1_0—) (1oglog0(t,7r))2>'

(i) For n = —1 an integer,

20 ~ (o o T 2—20
ML) (log C(t, ))>2 o <(dun,d( ) (log C(¢, 7))

(log log C(¢, 7)) "1 1= 0)2(loglog C (¢, 7T))”+2) < Snlovt,m)
. (log C(t,m))2"% d iy 4(0) (log C(t,m))* 27
< Moo () iog10g O, myyt + C((l ~ o) <loglogc<t,7r>>n+2>'

The functions appearing above are given by:

e For the logarithm,

d(20 —1)

My (1) = 5 <H1(¢ (log C(t,w))l‘%) )

) and p(o) = =0 201

e Forn =1 odd,
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e Forn =2 even,

2(Mfy o (1) + My, (0) My (6 My (0
M () + M, (1) ’

n—1,0

and pif (o) = (20 —1)d + 1.

When o — %Jr in the above theorem we obtain a sharpened version of (4.2.2)), (4.2.3)) and
[@.2.4) for the case of entire L-functions with improved error terms (a factor log log log C(t, )%/?
has been removed). Also, we obtain a sharpened version of a similar result for Sy, (¢, 7) with

n = 2 (see [18, Theorem 6]), as we will see later.

Furthermore, for a fixed § < o < 1 we obtain bounds as C(t, ) — o0.

Corollary 4.3. Let L(s, ) be an entire L-function satisfying the generalized Riemann hy-

pothesis and let n = —1. Let % <o <1 be a fired number. Then

20— 1 (log C(t,m))?2°
o(1—o0) +oll >> loglog C(t,m)

1
log |L(o +it,m)| < B (1 + o(1) —|—d<

and

Wn 20 -1 log O(t,))?2%°
st < it (1o (205 + o)) ) ot

as C(t,m) — o0, where w, = 1 and piq, = 1 if n is odd, and w, = V2 and pg o, = (20—1)d+1

if n is even.

4.2.2 Strategy ouline

The proof of Theorem [4.2] follows the same circle of ideas used to prove estimates of
Theorem First, we show the results for log|L(c + it,7)| and S, (o,t,7), when n >
—1 is odd. In these cases, we need three ingredients: the representation lemma for our
objects, the Guinand-Weil explicit formula for L-functions, and some extremal bandlimited
approximations. Later, we show the results for S, (o,t,7), when n > 0 is even, using our

argument of interpolation between S,,_1(o,t,7) and S, 11(0,t, 7).

4.3 Representation lemma III

Let m > 0 be an integer and % < 0 < 1 be a real number. In this section we consider
the function f, : R — R defined by

1+ 22
s(r)=log| ——— |,
) g(<o—;>2+x2>
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and the functions fa,41,, and f_1 , defined in (3.1.9)) and (3.1.10) respectively. The follow-

ing lemma can be considered as an extension of [14, Eq. (2.1)] and Lemma where the

case of the Riemann zeta-function was studied. The proof for entire L-functions follows the

same outline (see [20, Lemma 4]).

Lemma 4.4 (Representation lemma). Let L(s,m) be an entire L-function satisfying the
generalized Riemann hypothesis and m = 0 be an integer. Then, for % <o<landteR

we have

(i) For the logarithm,

log |L(o + it,m)| = (2 — ) log C(t, ) Efg (t—~)+ O(d). (4.3.1)

(ii) If n =2m + 1, for m € Zxg, then

=™ (3 -
2m(2m + 2)! \2

- % S fameto(t = ) + O(d).
4

Som41(o,t,m) = )2m+2 log C(t, )

(4.3.2)

(iii) If n = —1, then

S_1(o,t,m) = ——logC (t,m) Zf 1,0(t — o(d). (4.3.3)

The sums in ([£3.1), @3:2) and (&33) run over all values of v such that A(5 +iv,7) = 0,

counted with multiplicity.

Proof. First, we prove (£.3.1)). For § < o < 3 we have

0 ‘LWM) | Mo it | NG
i L(3 +it, ) & A3 +it, ) & | N(o+i)2
d (4.3.4)

Tr(3 +it + py)
Tr(o + it + pj) |

—I—Zlog

=1

We treat each term on the right-hand side of (4.3.4). From Hadamard’s factorization formula
[56, Theorem 5.6 and Eq. (5.29)], the analyticity of L(s,n) and the generalized Riemann
hypothesis, it follows that

A(o +it, m)
A(% +it,7r

log = —= Z log < +(t=)’ ) , (4.3.5)

- 2)2 (t_'Y)
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where the sum runs over all values of v such that A(% +17, 77) = 0, counted with multiplicity.

A simple computation of the second term show that

N (3/2+it)/2

~oroa | = (1 8)logN. (4.3.6)

log

To analyze the third term, we shall use the Stirling’s formula in the form

g

ﬁ(s) = %logs +0(1), (4.3.7)

which is valid for Re s > % Since Re pj = 0, we have

/

T 1
Re F—R(a + pj +it) = 3 log(|p; + it| + 3) + O(1) (4.3.8)
R
uniformly in % <a< %, so that

Tr(3 + it + ;)
Ir(o + it + /Lj)

3/2
= Re f (logTr(a + pj +it)) da

o

3/2 I’
= Re F—R(a + pj +it) do (4.3.9)
R

log

= (3 = 2)log(|pj +it| + 3) + O(1).

For the left-hand side of (4.3.4), note that

|log |L(s,m)|| < dlog((Re s) « JRes (4.3.10)
for any s with Re s > % Then, we get
log [L(3 +it,m)| = O(d). (4.3.11)

Finally, using (£3.5)), (43.6), (£3.9) and (£3.11) in (£3:4) we obtain for 1 < o < 3 and

t € R that

\][9V]

_ 2
log |L(o + it,m)| = (§ — §) log C(t, ) — %Zlog (( 1 j)g: (Z) N
v ) -

This yields the desired result. In order to prove (4.3.2)), we use integration by parts and
(4.3.10) to get

) +O0(d). (4.3.12)

_1\ym 3/2
Som+1(0,t,m) = 75(2177)1)' { f (o —0)*™ log |L(a + it, )| da} + O (d). (4.3.13)

Then, inserting (4.3.12)) in (4.3.13)) and straightforward computations will imply (4.3.2)).
Finally, we prove (4.3.3). By the partial fraction descomposition of the logarithmic derivative
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of L(s,m) in [56, Theorem 5.6], we have

/ d v

L . 1 1 log N 'y )
= tm) =S (— +-)+B- ~- Yok t+
L(0+z,7r) Zp:<o+z’tp+p)+ 5 ;FR(U+1 + 1),

where Re B = —Re )] p p~L. Then, taking the real part of this equation, considering that

p =% + iy and using (£.3.8) we obtain (4.3.3) as required. O

As we already know, the sum over the zeros of A(s, ) is complicated to be evaluated
directly. One more time, we replace the functions f,, fom+1,, and f_i, in Lemma
by an appropriate majorant or minorant of exponential type. We then apply the following
version of the Guinand-Weil explicit formula for L-functions. In our setting of entire L-
functions we shall use the following version (the proof of the general version can be found
in [20, Lemma 5]).

Lemma 4.5. Let L(s,m) be an entire L-function. Let h(s) be analytic in the strip [Im s| <
1 +¢ for some ¢ > 0, and assume that |h(s)| « (1 + |s|)=(+9) for some 6 > 0 when
|Re s| — c0. Then

1 d
p—3 log N ~ 1 J’
h = h —

0 /

r
h(u) Re ﬁ (5 + pj + iu) du

—00

CLS L (M) Ry (e
2m = \/n T 27 T 27 ’
where the sum runs over all zeros p of A(s,m) and the coefficients Ar(n) are defined by
(4.1.1)).

Remark 4.6. We highlight that for a general L-function, the explicit formula in Lemma
[4.1]] contains terms that are difficult to estimate in the critical strip, in comparison with the
explicit formula for an entire L-function in Lemma[f.5. For this reason, we can not obtain

uniform estimates in the critical strip for a general L-function.

4.4 Extremal bandlimited approximations II1I

Since that the functions fs, fom+1,, and f_i, do not verify the required smoothness
properties to apply the Guinand-Weil formula [£.5] we replace each of these functions by
appropriate extremal majorants and minorants. For the extremal functions of f_;, and
fam+1,0 we use the Lemma [3.9] and Lemma [3.10] For the extremal functions of f,, the

following lemma shows some properties of these functions.

Lemma 4.7 (Extremal functions for f,). Let % <o <1andA >0.02 be real numbers and
let Q(o) = |log(o — %)\ Then there is a pair of real entire functions g;—rA : C — C satisfying

the following properties:
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(i) For x € R we have

—ﬁlzg < gy a(@) < folz) < gfa(2) « (U_Ql(;)HQ (4.4.1)
Moreover, for any complex number z = x + iy we have
|95 (2)] < m, (4.4.2)
and
|94 A(2)] « W (4.4.3)

(i) The Fourier transforms of g;—rA, denoted by @fA, are even continuous functions sup-

ported on the interval [—A, A]. For 0 < & < A these are given by

% (k+1) | ) |
~t _ 41 k —27|€+kA|(0—1/2) _ —2w|E+kA )
NG k:Z_OO(_ A (e e ) (4.4.4)
(i1i) At & =0 we have
R 2) 1F 67(20‘71)7TA
+ _ 3

Proof. The proof of this result follows from [13, Lemma 3.2] (see also [14, Lemma 5-8]). O

Remark 4.8. In the lemmas above mentioned (Lemmal3.9, Lemma and Lemmal[{.7)
we will consider the hypothesis A = 0.02 instead of A = 1. This is possible because in the
proof of these results we only used the fact that 1/A < 1.

4.5 Proof of Theorem 4.2

4.5.1 Proof of Theorem [4.2} the logarithm and the case of n odd

In order to prove Theorem we shall first apply the Guinand-Weil explicit formula
to the extremal functions and then perform a careful asymptotic analysis of the terms
appearing in the process. We highlight that one of the main technical difficulties of our
proof, when compared with results in [I7, 20} 29], is in the analysis of the sums over prime
powers. To obtain the exact asymptotic behavior of such tough terms we shall need explicit

formulas for the Fourier transforms of these extremal functions.

Let m > 1 be an integer, and ¢ > 0, A > 0.02 and % < 0 < 1 be real numbers such that

(1-0)’rA>c LetteR, 8 =0—% and let h%(s) be any of the six extremal functions
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referred to in Lemmas [3.9] [3.10] and [4.7] As explained in the previous section, we replace
each one of the functions fo41,6, f-1,, and fs by its extremal functions in Lemma @
This means that we must bound the sum hx (¢t — 7). If we consider the function h¢(s) :=
h(t — s), then he(€) = ﬁi(—f)e‘szt. It follows from (3.3.6)), (3.3.7), (3.3.8), (3.3.25)),
(3.3.26), (4.4.1)), (4.4.2), (4.4.3) and an application of the Phragmén-Lindel6f principle that
|h¢(s)] « (1 + |s|)~2 when |Res| — oo in the strip [Im s| < 1. Therefore, the function hy(s)

satisfies the hypotheses of Lemma [d.11] By the generalized Riemann hypothesis and the

fact that ﬁi are even functions we obtain

d
log N ~ 1 & I ,
Zhi(t—v)= gw hZ(0)+WZJ hi(t—u)Rep—i(%+uj+zu) du

v j=1+7%
i i L/}\Li logn (A ( ) —itlogn +A ( ) ztlogn) (4‘5‘1)
2 = \/n A\ 27 " " ’

where the sum runs over all values of « such that A(% +17, 7r) = (, counted with multiplicity.
We now proceed to analyze asymptotically each term on the right-hand side of (4.5.1)).

1. First term: The first is given by (3.3.4)), (3.3.30) and (4.4.5)).
2. Second term: We first examine the functions g;—r A~ It follows from (4.4.1)), for any x # 0,

that

1 _
5 < g5 A@) < fo(2) < .

Hence, from (4.4.2), we deduce
. O
19,.A(2)] < mm{ﬁ,A }

Then, using (4.3.7) and the fact that A > 0.02, we see that

1 (* 'y
f g;A(t—u)Reﬁ(i%—,ujﬂLiu)du

T J—o0

L (™ _ 1 . 2
=5 ga’A(t—u)log|§+,uj+w| du + O(A*)

177 e (4.5.2)
=5 g;A(u){ log(|p; + it| + 3) + O(log(Ju| + 2))} du + O(A?)

—00

lo i+t +3)

_ g(|:U’J o | )QUVA(O) + O(A2)

Similarly, the relation
1
1952 @)| « Qo) min { . A%}

implies that

o I 1 it] +3)
f g At —u)Re FR (2 + pj +iu) du = og(lny ;;Z [+3) G5 A0) + O(0)A?). (4.5.3)
w R ’
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We next examine the functions g5 - 410~ Using (3.3.24) and (4.3.7) we obtain

@ Iy log(|p; + it] + 3)
+ R (1 - j ~t
5 t—u)Re == (5 ; du = 5 0
J_OO Yam+1.0n(t —u) Re T (3 +pj +iu) du o 93m+1.0.4(0) (4.5.4)
+ O (1).
Finally, we examine the functions mér A FO<B < % and |z| = 1 then
B 1
h = < .
5(2) B2+ 22 "1+ a2
Hence we get from (3.3.6]) that
Q0 0
0< f mg A (2) log(2 + |z[) dz < f hg(z)log(2 + |z|) da
—0 —0o0
1
_ J (o) log(2 + fa) do +f @) os(2 ¢ )z = O
_ o|>
and using (4.3.7) we get
1(* _ 'k 1 , log(|p; + it] +3) . _
- J;OO mg A(t —u)Re s (5 + pj +iu) du = 7 5 mg A(0) +O(1). (4.5.5)
Similarly, (3.3.6)) and (4.3.7) imply
L (* . I log(|pj + it] + 3) 1
- t—u)Re =& (3 + pj + iu) du = ! A A0)+0( =), (45.6
- Jocmﬂ’A( u) Re T (3 + py +iu) du 5 mg A(0) + 5 ( )
3. Third term: Let x = €™ and note that this term is a sum that only runs for 2 < n < .
We start by examining the functions g;—L A~ Observe first that
Z |k +1] ~2TIEHRA] ( =2mA (4.5.7)

iz |6+ RA

when 0 < £ < A. Using (4.1.2)) (note that ¥ = 0), (4.4.4)), (4.5.7) and the prime number

theorem we find that

0
<2d A(n) Z (+1 k (k + 1) (6f|lognwk|(ofl/2) _ 67|10gnmk|>
oVl e | log nak|
A ) E+1 —|log nz®|(c—1/2)
<2q 3 AR 3 (p1yelEELe . +0(d).
n<e VI |10 | log na*|

It is now convenient to split the inner sum in the ranges £ > 0 and k£ < —2, and regroup
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1 > 1 logn —itlogn A () itlogn
5 2 nﬂh( o >(Aw(n)e BT N () el (4.5.8)
n=2
(n) | & . kE+1 k+1
<2d ) —= ) (+1 - O(d).
e VI kz_o( " \ognar) (nar)172 (log £2) (2hi2yo1/2 Hou

For the function g_ ,, using Appendices A.6, B.1 and B.2 in (4.5.8)) we obtain that

i i La— IOng (A (n> e—itlogn +meitlogn>
21 oA\ 2r " "

<2d ) Aln) ( ! ne /2 ) L O(d)  (45.9)

=vn no=12logn  (2logx — logn)z20-1
d (20. _ 1) 6(2—20’)71'A o de(2—20’)7rA
Co(l-0) 7wA TG (1—0)2A2 )"

For the function Q; A» We isolate the term £ = 0 and using Appendices B.1, B.2 and B.3

in (4.5.8) we get

1 & 1 ., (logn —itlogn | N7 itlogn
5 2 UA( o >(A“(”)e + R et)

d (20. _ 1) 6(2—20’)7‘(‘A d e(2—20)mA
< Oc
oc(l-0) 7A (0 —3)(1—0)2A2

(4.5.10)

We next examine the case gQim 110+ As we did in the previous case, using (3.3.31), (4.1.2)),
(4.5.7) and the prime number theorem it follows that

1 & 1 . ] . .
MRS TN o | (RIS = D

T \lognah)2mt2 (nak)e =12 (gg ahizy2m2 gtz o1

n n

We isolate the term k = 0 and using Appendices B.1, B.2 and B.3 we get

1 L 1 . 1 4 -
o 2 n Qim-i-l,a,A <02g7:1) (Aﬂ(n) e~itlogn L A (n) eltlogn)

d(2m)! (20 — 1) e2-20)7A
< o(1— o) (2mA)2m+2 + Opm.c MW + Om.e(d).

oo (4.5.11)

We finally examine the case m;{A. Note that in this case we have (% — B)?7A = c. Using
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the fact that ﬁl;gr A are nonnegative (see (3.3.4)), by (4.1.2) and Appendix B.4 we have that

o Z NG i ( O;ﬂ_”) (Aﬂ.(n) e—itlogn A (n) eztlogn)

n=2

d 2 np
< G =T > \F) < M) (4.5.12)

n<x

2d 3 e(1=20)7A d B e1-20)
< (i—52)(1$e*27"6A)2 +Oc ((2 B)QA( e QWBA) )

Therefore, for the function fh[}’ A We obtain in (4.5.12)) that

0 ¢]
1 1 A .
5, s (52) e e

(4.5.13)
2d 8 e(1726)7rA O dBe (1-28)7A
< +0c| ——5—
(=B + e 2y (F-87a
As for the function fhg A» considering that
! & L L *
(1- 6*2”5A)2 (1- 6*5)2 B
we have
i i im+ logn (A (n) —itlogmn + A, ( ) ztlogn)
2m BAN\ 2r T
" (4.5.14)

2dp3 e(lfQﬁ)ﬂA de(1*25)7"A
SO e msp T '

Final analysis for log|L(c + it,7)|: We first will prove the upper bound. From Lemma

and we get

. . e
log|L(o + it,m)| < (} = §)log C(t,m) — 5 D 9,4t =) + O(d). (4.5.15)
v

In other hand, using (4.5.2]) and (4.5.9) in (4.5.1) we obtain

Z (t — log C(t,m) _ 0) — d (20 —1) e(2=20)mA

9. 27 74 o(l—o) 7wA
d€(2—20)7rA

T =opm)

(4.5.16)
+0(dA?) + OC<
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Then, combining (4.4.5)), (4.5.16|) and (7.1.2) in (4.5.15) we get

' 1 1+ e—(2a—l)7rA d(20’ _ 1) e(2—20)7rA
Lo, d6(2 20)TA ‘
(1—0)2A2
Choosing A = log log C(t, W)EL we have
d6(2—20)7rA
1 —27A 1
5 A log( +e ) ogC(t,m) « 7(1—0)2A2’

and the desired result follows from (4.2.5). The proof of the lower bound is similar, com-
bining (4.4.1)), (4.4.5), (4.5.1)), (4.5.3), (4.5.10), (7.1.2) and (4.3.1).

Final analysis for S_i(o,t,m): Let us first prove the lower bound. From Lemma and
(3.3.6|) we have

1
—2—logC (t, ) ZmBA (t—~)+0(d) < S_1(o,t,). (4.5.17)

Combining ({3.3.4), (4.5.1)), (4.5.5)), (4.5.13)) in (4.5.17)) we deduce that

1 —27BA 9 1-28)rA
S,l(a,t,w)Z—OgC(t’ﬂ) e - B dfe !
m 1+ e 2784 (L — B2)(1 + e=2762)
dﬂe(1726)ﬂ'A
+Oc | ———5— | +0(a).
( TSN

We now choose 7A = loglog C(t, 7). Recalling that § = o — %, by (7.1.2)) this choice yields

S_1(o,t,7) = —

(log C(t, m))2~2° ( 1 . d(20 — 1) )
0 (1+(10g C(t,m))'=27) * 5(1 — o) (14 (log C(t, ))1~20)

d (o — 3)(log C(t,m))>~2
+ O, < 1 _;)2loglogc(t’7r) ) .

Observe that this estimate is actually slightly stronger than the one we proposed in Theorem
For the proof of the upper bound, as before, combining (3.3.4)), (3.3.6)), (4.5.1)), (4.5.6]),

(4.5.14)), (7.1.2) with (4.3.3), and choosing mA = loglog C(t, 7) we obtain that

o < (g Ctm))* 27 1 d(20 — 1)
S-1(0,8,m) < T ((1 - (logC(t,n))l—QU) + o1 — a)(l — (log C(t, ™)1 20’) )
d(log C(t,m))?"2%
o (( —1)(1 —o0)%loglog C(t,7r)> ' (4.5.18)

3Note that we can choose A in this form, since that loglog C(t,7) > loglog3 > 0.09 and this implies
that we need A > 0.028...
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Finally, note that if we write 8 = log C'(¢,7), then 6 > log 3 > 1, and therefore

1 1 &« o &« L < 1
(1—01-20)* )~ (1—61-20)" (0 —3)2(ogh)? (0 — 3)*(log6)’
By applying this bound in (4.5.18)), we obtain the desired result.

Final analysis for Saom,i1(0,t,m): Let us first consider the case where m is even. We will
prove the upper bound. From Lemma and (3.3.24]) we have that

1

2m+2
srEm iy o) lgCltm)

) (4.5.19)
i Sl =)+ Ol
v

52m+1(07 ta 7T) <

Combining (3.3.30), (@.5.1), (@.5.4), [@.5.11) and (7.1.2) in ([@.5.19) we get

log C(t, ) 3/2 9m 1+ e 2m(a=1/2)
S Gmyzmea |, @ s | de

d (20_ _ 1) 6(2720)7rA de(272a)ﬂ'A
mo(1— o) (2rA)>m+2 (1—0)2A%2m+3

SQm+1 (U> ta 71')
(4.5.20)

+ On(d) + Op e (

We now choose 7A = loglog C'(¢, 7). Using (7.1.2)) in (4.5.20) leads us to

Q0
Somir(o,t,7) < log C(t, ) (@ — 0)2™ log (1 N e—27r(a—1/2)A> do

(2m)!2m2A ),

N d (20_ _ 1) 6(2720')7TA o de(2720)ﬂ'A
mo(1— o) (2rA)2m+2 "\ (1 - 0)2A2mE3 |

Finally, taking into account that

0 2m 7271'(0171)A 0 k:-‘rl 672k7r(0'7%)A
J (a—0) log(l—i—e 2 >da 27rA 2m+ Z ImTe ,

(e

we obtain the desired result. The proof of the lower bound is obtained similarly, combin-
ing (3.3.24), (3.3.30), (.5.1), (@.5.4), @.5.11), (7.1.2) and (4.3.2). When m is odd, the
proof is similar, since only the roles of the majorant g;m oA and minorant g, +10.A ATE
interchanged due to the presence of the factor (—1)™ in Lemma

4.5.2 Proof of Theorem [4.2: the case of n even

In order to bound the functions So,,(o,t,7) when m > 0 is an integer, we follow a
different argument to the case of Sop,+1(0,t, 7). Although we can obtain a representation
as in Lemma (see Lemma [3.8)), it is unknown to find extremal majorants and minorants

of exponential type for the associated functions in the representation. Therefore, we follow
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the same outline as in Section [3.6] where similar functions associated with the Riemann
zeta-function were studied. Here we present the necessary changes to adapt the proof in
for our family of entire L-functions. The main change consists in the suitable use of the

mean value theorem, since the analytic conductor is not sufficiently smooth.

Since we assume the generalized Riemann hypothesis and % < o < 1, we have that
Somi1(0,t, ) = Som(o,t,m) and Sy, (0,t,m) = Sam—1(0,t,m) for all t € R. For n > 0 we

consider the following functions

(log C(t, )27
(loglog C(t, 7)™

d(log C(t,m))?"2%

Ino(t) = (1—0)2(loglog C(t, m))"’

and 7,4 (t) 1=

Final analysis for S(o,t,m): Let ¢ > 0 be a given real number. In the range

16
1—0)2 > 16
(1-0) loglog C(t, )

we have already shown that

— M

1,0

(t) a6 (1) + Oc(r3o(t)) < Si(o,t,m) < Mt (1) oo (1) + Oc(rso(t)),  (4.5.21)
and that
_M:l,o(t) EO,J(t) + Oc(rl,a(t)) < S—l(Ua t, 7T)~ (4.5.22)

Let (o,t) be such that (1 —0)? > —=57=- By Appendix A.7 we have that in the set
glog C(t,m)

{(o,n); t —25 < p < t+ 25}, estimates (4.5.21]) and (4.5.22) hold. Then, by the mean value

theorem and (|4.5.22)), we obtain for 0 < h < 25,

S(o,t,m) — S(o,t —h,m) =hS_1(0,t},7)
> —h M7y ,(t;) loo(ty) + hOc(r10(th)) (4.5.23)
= —hMZ, ,(t}) oo (ty) + hOc(ri0(t)),

where t7 is a suitable point in the segment connecting ¢ — h and ¢. We claim that
|MZy 5 (t) lo. (1) — M2y 5 (t) oo (t)] <« d g, (4.5.24)

where p4, = (20 —1)d + 1. In order to prove this, we define the function

1 < 1 d (20 — 1)> 220

() = a\l+z1"20 " o(1—0)

Note that |¢}(x)| « pq for z > 1, and g;(log C(t, 7)) = M

—1,0

(t) £o,»(t). The mean value
theorem applied to the functions ¢g; and the logarithm imply that
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lg1(log C(t, 7)) — g1(log C(t, )| < pae|log C(t, ) —log C(t}, )|
d

< ptao ) |log(|pj + it| +3) — log(|p; + ith| + 3)|
j=1
d
< prag Y [l + it] = |y + it}
j=1
d
< pdo Y, [t —th] < dpigo. (4.5.25)
7j=1

We thus obtain , and using we have that
|M~, () oo (t) — M7y () Loo (t)] < paeT1.0(t). (4.5.26)
From and it follows that
S(o,t,m) = S(oyt —h,m) = —h M~ () loo(t) + hOc(ptao m1,6(t))- (4.5.27)

Let v = v,(t) be a real-valued function such that 0 < v < 25. For a fixed ¢, we integrate
(4.5.27)) with respect to the variable h to obtain

S(a,t,w)>1f S(o,t — h, ) dh—1<
VJo

v

fyh dh) M=y, (1) boo (1)

0

n % UV h dh> Oclhd.o 1,0(t))

0

1
= = (Su(ot,m) = Si(oyt —v,m)) = % M= () o0 () + Oclv g, 11,0(2)).

From we then get
1
S(0,t,7) 2 —| = My, (1) Ca.o (1) = Mty (t = 1) €a,5(t = v) + Oclra,o (1)) + Oclr ot = v) |
1%
D) M:l,a'(t) lo,o(t) + Oc(v Hd,o m,0(t))

= [ M, 0+ ME, ()] S a0(6) & M (1) oo )

ag g t
+ 0, (“df’()) + 0cv o 11.0(1)), (4.5.28)
where the following was used
| M, () oo (t) — My, (t = 1) o, (t — V)| € pao73.0(t). (4.5.29)

We now prove (4.5.29)). For x > 0 define
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1 (—1)k d(20 —1)\ «**
g2(z) = An (kZ_O (k + 1)21’(2‘7—1)k o(l1—o) ) (log z)?

Note that Mftg(t) ly+(t) = g2(log C(t,m)). For each k > 0 and x > log3 > 1 put

1 1220 x(k+1)(1720)+1

fr(z) = 2@ 1F (log 7)2 - (log z)?

Then, for z > y > log 3 using the mean value theorem, we have that

& 1

d(20 —1)

g2(z) — g2(y)| « Z (k1) Qlfk (Z/)""WUO(HU)—JCO(Z/)’
y(ko PEE o (&) + ( !h 0 (4.5.30)
. & (k+1)(20 —1)+1) d(20 —1)
« | y(g 5 1) kﬂ)(% D(log )7 T >7

where &, € € |y, z[ for each k = 0. Observe now that by the mean value theorem

(k+1)(20—-1)+1)

((k+ 1 (20 — 1) +1)
(k + ) y(k+1)(20—1)(10g y)2

a0

N
HM8

& 20 — 1 d(20—1)
Z Fl+——
logy = (k+1)y (k+1)(20-1) l—0o
0
20 —1 20 —1
Z o 1+d(0 )
logy = k+1 (20—-1) 1—o0

Hd,o
(1 —0)(logy)?

Then, in (4.5.30]), by using a similar idea as in (4.5.25)), we obtain

Hao |logClt,m) —log C(t — v, )|
92108 C(t,m)) — galog C(t — v, )| o (g bg Tl 7
d piq.o (log C(t,m))>"2%
(1 —0)2(loglog C(t,m))3"

<

This proves (4.5.29). We now choose v = % in (4.5.28)), where A\,(t) > 0 is a

function to be determined. This yields

-
S(a,t)?—[(MiU(t)+Mffa(t)> A:(t) + =T 2o () | £10(0)

+ Oc <W> + Oc(ptdo Ao (t) 12,6 (1))-
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The optimal A\, (¢) minimizing the expression in brackets is

(ML, (1) + Mi, (1))
Mt)z( M7, (1) ) '

and this leads to the bound

1/2
S(o,t) = —[2 (M, (t) + M, () M~ (t)] l1,5(1)

—1,0

(4.5.31)

+ Oc (W) + Oc(ttdo Ao (t) 72,6 (1))-

Finally, using some estimates for H,(z), one can show that 1 < A\,(t) < 2, which implies
that indeed 0 < v < 25, and allows us to write (4.5.31]) in our originally intended form of

1

S(o,) = = [2(M, (1) + M7, (1) M2, (1)) 60 (8) + Ocltiag ra.0(1)):

The proof of the upper bound for S(o,t) follows along the same lines.

Final analysis for Sop(o,t,m): The proof of this estimates follows the same outline in
§3.6.2 The substantial changes in the use of the mean value theorem are similar with
(4.5.25) and (4.5.30)).

4.6 Behavior on the critical line S, (¢,7): general case

In the previous section we established bounds for S, (o,t,7) for a family of entire L-
functions defined in Our purpose here is to extend the case ¢ = % to the general
family of L-functions (not necessarily entire) defined in Section Essentially we want
to establish an extension of Theorem to the functions Sy, (¢, 7) associated to the general

family of L-functions.

Theorem 4.9. For n > 0, let CE be the constants defined in Theorem . Let L(s,m) be

a L-function satisfying the generalized Riemann hypothesis. Then, for all t > 0 we have

log C(t, )
(loglog C(t, m)3/d)n+1

< (42076 + o(1))

_((1 L 20O + 0(1)) < Salt, )

log C(t, )
(loglog C(t,m)3/d)n+1"

The terms o(1) above are O(logloglog C(t,7)%?/loglog C(t,7)%?), where the constant im-
plicit by the O-notation may depend on n but does not depend on d or N.

The case n = 0 of this theorem was established in [I7] and the case n = 1 was established
in [20].
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4.6.1 Sketch of the proof

The proof of Theorem [4.9] follows the same circle of ideas used to prove Theorem
We only give here a brief account of the proof, indicating the changes that need to be made.
Notice that we only need to prove Theorem for the case n odd, since the case of n > 2

even follows by reproducing the interpolation argument of Section [2.6

Let f,, be defined by (2.2.8)) - (2.2.9) and consider here the dilated functions
Fuz) =27 f, (2). (4.6.1)
The following result is the analogue of Lemma [2.5

Lemma 4.10 (Representation lemma). Let L(s, ) satisfy the generalized Riemann hypoth-
esis. For each n =0 and t > 0 (and t not coinciding with an ordinate of a zero of L(s, )

in the case n = 0) we have:

(i) If n = 2m, for m € Z™*, then

Sam(t,™) = Y Fam(t —7) + O(d). (4.6.2)
gl
(i) If n =2m + 1, for m € Z*, then
—_1)m 22m+1 —1)m ~
ng+1(t, 7T) = (71_(2)77%_'_2)' log C(t,ﬂ') - 75(2%)' ;meJrl(t - ’)/) + O(d) (4.6.3)

The sums in ([£.6.2) and (£.6.3) run over all values v such that A(3 + iy, m) = 0, counted
with multiplicity.

Proof. This follows the outline of the proof of Lemma and Lemma truncating the
integrals (2.3.4) and (2.3.9) in the point 5/2 instead of 3/2, and introducing the test point
5/2 + it instead of 3/2 + it in (2.3.5) and (2.3.11)). This is due to the inequalityﬁ

|log|L(s,m)|| < dlog((Re s —1) « (4.6.4)

9Res
for any s with Re s > 3, ({1.1) and (£1.2)), in order to better deal with the absolute
convergence issues, and ultimately causes the replacement of f,, by the dilated version fn.

Full details are given in [I7, Section 4.2] for n = 0 and in [20, Lemma 4] for n = 1. O

The explicit formula for the general family of L-functions takes the following form (com-
pare with Lemma, .

4Since now we consider a general L-function, we have that (4.6.4) remains in the range Re s > g, while

that in the case of a entire L-function it remains in the range Re s > 2 (see (#.3.10)). For this reason the

2
dilations (4.6.1) appear in the Lemma m
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Lemma 4.11 (Explicit formula for L-functions). Let h(s) be analytic in the strip |Im s| <

1 +¢ for some e > 0, and assume that |h(s)| « (1 + |s|)=(*9) for some § > 0 when

1 1 log N (*
(22> +h <_22>} + o ) h(u) du

|Re s| — oo0. Then

D)t

>

where the sum runs over all zeros p of A(s,m) and the coefficients Ar(n) are defined by
@1).

Conclusion of the proof

For n =2m + 1E| we have the extremal majorants and minorants of exponential type A
for meH given by Lemma . These are

- 22m+1 = 22m+1

Jomi1.a(2) Jomi12a(2/2) and G,y A(2) Yam+1.24(2/2).

We now replace fgmH in (4.6.3)) and evaluate using the explicit formula. Let us consider,
for instance, the upper bound in the case where m is odd. Letting h(2) := §a,, .1 A(t — 2)

we have

22m+1

m(2m + 2)

We evaluate > h(v) from the explicit formula (Lemma[4.11). From Lemma [2.8| we have

r(@) {h (%) + b (=3)}

LD pEReed s e
_1<Re,uj<—% Reyjz—%
&m dAZ ™. (4.6.6)

5We refer the interested reader to [20], where full details are given for the case n = 1.
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Using Striling’s formula in the form

I'y 1 1

—(2z) = = log(2 e 1
T (2) 5 0g(2 + z) p + O(1),
valid for Re z > —%, we find that

log N [*
2 J_o

1 (» I, . ,
h(w) du + W;J—w h(u)Re Ty (5 + pj + iu) du

_ logC(t,m) f bW du + O(d).

27 —»

(4.6.7)

By Lemma the Fourier transform iAL(f) is supported on [—A,A] and is uniformly
bounded. Also, by (4.1.2)

1 & 1 { ~ (logn ~ (—logn 9-1/2
— Y — Aﬁ(n)h< >+Aﬂ(n)h< >}:o d A(n)n?~Y
o 2 n 2 2m ng;ﬂ (4.6.8)

—0 (de(1+219)7rA> ’

where the last equality follows by the Prime Number Theorem and summation by parts.

From the computations in (2.5.5) and (2.5.6)), together with (4.6.5)), (4.6.6), (4.6.7) and
[.6.8) we get

C+
Som1(t,m) < (WAQ)% logC(t,m) + O(e_27rA log C(t,w)) +0 <d A2 6(14-219)7FA) ]

for any ¢ > 0 and any A > 1. Choosing

log log C(t, )% — (2m + 5) log loglog C(t, w)%/®
TA = max , T
(1+29)

yields the desired result. The lower bound for m odd is analogous, using the minorant

Gom 1A The upper and lower bounds for m even are also analogous, changing the roles of

NJ’_ ~—
Jom+1,A and Jom+1,A
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Chapter 5

The Riemann zeta-function and

the resonance method

This chapter is comprised of the paper [A4]. We obtain new estimates for extreme values
of the argument of the Riemann zeta-function and its high moments near the critical line
assuming the Riemann hypothesis. The proof follows similar ideas from Bondarenko and
Seip [9] in the case of S(t) and Si(t). Our main tools are certain convolution formulas for
the functions Sy, (o,t) and a new version of the resonance method of Soundararajan given

in [9]. In particular, we obtain new omega results for Sy (t).

5.1 Extreme values for S,(o,1)

5.1.1 Behavior in the critical line

The function S(¢) has an intrinsic oscillating character and trying to understand its
behaviour is a difficult problem up to this date. By Corollary we have, under RH,

1S(t)| < <1 + 0(1)> loz)itgt, (5.1.1)

where o(1) = 1/loglogt. The constant 1/4 and the order of magnitude logt/loglogt are

the best known up to date. In particular we obtain that

\4-

loglogt| 1
S(t)ogog’<

lim sup
t—00

logt

On the other hand, Montgomery [73, Theorem 2] established the following omega results,
under RH,

oo )1/2
() = Oy (W) (5.1.2)
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This implies that

) (loglogt)'/?
1 S(t)—————
e S g )12

1/2
>0 and lim infS(t)M
t—00 (log t) 1/2

It is likely that the estimate (5.1.2)) is closer to the behavior of the function S(¢) than the

estimate ([5.1.1)). In fact, a heuristic argument by Farmer, Gonek and Hughes [38] suggests

1/2

that S(t) grows as (logtloglogt)'/#, in the sense that

lim su S(t) _ !
P (loglogt)1/2(logt)V/2 — 74/2

Similarly, for the case n = 1, Theorem [3.1] implies that

) (loglogt)? T . (loglogt)? =
1 Si(t)———=>=—= and 1 £S1(t)——7"— < —.
msup S1() = og And HminfSi(H)= 0 48

Also, Tsang [87, Theorem 5] established, under RH,

Si(t) = Q4 (W) (5.1.3)

log log t)3/2
and this implies that

(loglogt)3/?

0.
(log )2~

3/2
limsup S (¢) (loglog )™=

m su (log1)1/2 >0 and htrgloglf Si(t)

For the case n > 2, using the notation in Theorem we have

(loglogt)™+!

log log ¢ n+1
lim sup S, () (loglog )" og 1

> —C, and liminf S, (t)
t—00 logt t—o0

n

< C7,

n

but, to the best of our knowledge, there are no known omega results for S, (t).

Recently, Bondarenko and Seip [9] used their version of the resonance method with a
certain convolution formula for {(s) to produce large values of the Riemann zeta-function
on the critical line. Besides, using a convolution formula for log ((s), they obtained similar
results for the functions S(¢) and Si(t). They showed the following theorem.

Theorem 5.1 (cf. Bondarenko and Seip [9]). Assume the Riemann hypothesis. Let 0 <
B < 1 be a fired real number. Then there exist two positive constants cy and c1 such that,

whenever T is large enough,

log T)Y/2(1og log log T')1/2
max [S(8)] >c0(°g )/*(logloglog T')
TB<t<T (loglog T)1/2

and

log T)Y/2(1og log log T')1/2
e Sl(t)>cl(0g )/*(logloglog T)
TB<t<T (loglog T')3/2
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Theorem implies the following omega results for S(¢) and S (¢):

1/2 1/2
S(t) = Q((logt logloglogt) > and Sy(t) =, ((logt logloglogt) )

(loglogt)1/2 (log log t)3/2

This result can be compared with the 4 results of Montgomery ([5.1.2)) and the Q. result
by Tsang (5.1.3).

5.1.2 Behavior in the critical strip

In Theorem we established bounds for S, (c,t), where % < o < 1. In particular, for
a fixed number % < 0 < 1, under RH, we have that

_ (log t)2—20’
Sn (U? t) - On,cr < (log 10g t)n+1 )

for n = 0. On the other hand, under RH, Tsang [87, Theorem 2 and p. 382] states the

following lower bound

1/2
sup £S(o,t) =c (log T)

te[T,2T] (loglog T')1/2 ( )

for % <o < % + m, T sufficiently large and some constant ¢ > 0. This result shows
extreme values for S(o,t) near the critical line. For the critical strip, a result of Montgomery

[73] states that, for a fixed 3 < o < 1, we have

(logt)' >

S(o,t) = Q4 ((J - %)2 (loglog t)®

5.1.3 Main result

The main result of this chapter is to show lower bounds for S, (o, t) near the critical line,

similar to (5.1.4), for n > 0.

Theorem 5.2. Assume the Riemann hypothesis. Let 0 < 8 < 1 be a fixed number. Let

o > 0 be a real number and T > 0 sufficiently large in the range

—_

1
Ko< -+ ———.
? 2+loglogT

N

Then there exists a sequence {cy}n=0 of positive real numbers with the following property.

1. Ifn=4m+ 1, for m € Z>p:

(log T)' =7 (loglog log T')?
S, t) =
ng)s(T n(o,t) = en (loglog T)o+n
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2. In the other cases:

(log T)'~“ (log log log T')°
S, (0.1)] =
B (s e S A

Note that when o = % and n = 0 or 1, we recover Theorem Moreover, we obtain

the new omega results on the critical line.
Corollary 5.3. Assume the Riemann hypothesis. Then

1. Ifn=4m+ 1, for m € Z>o:

B (log t logloglog t)'/?
Sn(t) = Q+< (log log £)"+172 (5.1.5)
2. In the other cases:
S (t) = 0 (logt logloglogt)'/? (5.1.6)
" (loglog t)n+1/2 ' o

Remark 5.4. It was pointed out to me by M. Milinovich that: for n = 3, Corollary
holds without the Riemann hypothesis. Assuming RH, Corollary follows immediately
from Theorem . If RH fails, an inequality by Fujii [{1, Pag. 6] establishes that there is
a zero Py + iy of ¢(s) with By > 1/2 and vy > 0 such that

1 2
Sn(t) = An </BO - 2> tn727

for t > 2y, where A, is a positive constant. This implies (5.1.5) and (5.1.6).

5.1.4 Strategy outline

Our approach is motivated by the ideas of Bondarenko and Seip [9] on the use of their
version of the resonance method and a convolution formula for log ((s). Soundararajan [85]
introduced the resonance method to produce large values of the Riemann zeta-function on
the critical line and large and small central values of L-functions. Also, this method has
been the main tool for finding large values for the Riemann zeta-function, L-functions and
other objects related to them, in the critical strip (for instance in [1} 2] 3| [7, 8, 9L 111, [63]).

The resonance method. The main goal in the work of Soundararajan [85] is to
produce large values of |¢ (% + 4t)|. The idea of the resonance method is to find a Dirichlet

polynomial



which “resonates” with ¢ (% +it) and picks out its large values. Precisely, we need to compute

the smoothed moments

oe]

Mi(R,T) :J

—00

|R(t)|2<1><;> dt, and

w1 = [ o vinirwPe(y )

Here ® denotes a smooth, nonnegative function, compactly supported in [1, 2], with ®(¢) < 1
for all t, and ®(¢) =1 for 5/4 <t < 7/4. Plainly

Tg}ngK(% +it)] = ML (R, T
When N < T'7¢ we may evaluate M (R, T) and My(R,T) easily. These are two quadratic
forms in the unknown coefficients r(n), and the problem thus reduces to maximizing the
ratio of these quadratic forms. Solving this optimization problem, Soundararajan obtained
good lower bounds for rnax IC(5 +it)).

The use of this Dirichlet polynomial is the principal difference between the works of
Soundararajan [85], Bondarenko and Seip [9] and the works of Selberg and Tsang, where
they used estimates of high moments to detect large values of Dirichlet series. In contrast
to the resonance method of Soundararajan [85], Bondarenko and Seip used significantly
larger primes, a longer Dirichlet polynomial, and replaced the use of the function ®(t) of
Soundararajan with the Gaussian function. This replacement produce the change from the
interval [T, 27" to [T, T], where the function |((5 + it)| is maximized.

The strategy of the proof of our results for S, (o,t) can be broadly divided into the

following three main steps:

Step 1: Some results for S,(o,t).

The first step is to show bounds for S,(c,t) and for their moments. Bondarenko and
Seip only needed to use the Littlewood’s estimate and bounds of Selberg [82] for the
moments of S(¢) and S;(¢), assuming the Riemann hypothesis. In our case, we will use a
weaker version of Theorem to estimate the function S, (o,t) uniformly in the critical
strip. As a simple consequence of this result, we will obtain an estimate for its first moment.
Finally, we will extend the convolution formula for log((s) given in [87, Lemma 5] for the
function S,(c,t). Although we restrict our attention to a region close to the critical line,
we will show the bounds for S, (0, t) in the critical strip, which may be of interest for other

applications.

Step 2: The resonator.

The construction of our resonator is similar to that made by Bondarenko and Seip [9,

Section 3]. In particular, when o = % we obtain the resonator used by them. A deeper
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analysis in [J, Lemmas 3 and 4] allows us to show these results for a region close to the
critical line. This implies that the main relation between the resonator and the convolution
formula of S, (c,t) will follow immediately in the same way as obtained in the case o = %

[9, Lemma 7].

Step 3: Proof of Theorem

We follow the same outline in the proof of [9, Theorem 2]. We will estimate the error
terms in the integral that contains the resonator and the convolution formula of S, (o,1t).
The main difference in our proof with that of Bondarenko and Seip is in the choice of the
sign for a certain Gaussian kernel. This choice will depend on the remainder of n modulo
4. In particular, this allows to obtain 2, results for S, (t) when n = 4m + 1, for m € Zx,

and €2 results in the other cases.

Remark 5.5. Throughout the following sections, for n = 0 an integer and % <o<la

1
fized real number, we extend the functions t — Sy (o,t) to R in such a way that S,(o,t) is

an odd function when n is even or is an even function when n is odd.

5.2 Some results for 5, (o,t)

The main goal in this section is to show bounds for the functions S,(o,t) and some
convolution formulas of these functions with certain kernels. Throughout this section we let

n = 0 be an integer and 0 < § < % be a real number.

5.2.1 Bounds for S,(0,1t)

We will need a weaker version of Theorem to bound the functions S, (o, ).

Theorem 5.6. Assume the Riemann hypothesis. We have the uniform bound

(log t)272cr
(loglog t)n+1

Sp(o,t) = On75<
in % <o<1-0<1 andt> 0 sufficiently large. In particular, we obtain for all t € R that
Sn(o,t) = Oy 5(log([t] +2)). (5.2.1)

Proof. 1t is enough to show when o > % For t sufficiently large we have that

(1—0)?loglogt > 6*loglogt > 1.

94



Then, by Theorem [3.1] we have

_ (loglogt)?~2°
— t ns(l))————— < Sp(o,t
( Cn,o()+0 ,5( )) (loglogt)"“ S (U ) (522)
loglogt)?2° -
< (CF () + Ons(1 (—
(Cn,a( ) + ,5( )) (loglogt)”+1 ’
where C=_(t) are positive functions. For n > 1 odd, these functions are given by:
h C’:;J() f F dd, these f b
1 n 9% 20 —1

Ci0) = g (Hooa (£ (-0 00g0) ) + 22200 52y

where
H,(z) = YRRV
= (k+1)

Note that when m > 2, we have the bounds 1 — 27 < H,,(z) < ((m), for |z|] < 1.
Therefore, we obtain in ((5.2.3|) for n > 1 odd and ¢ sufficiently large

s < O, (1) < bus, (5.2.4)

n,o

for some positive constants a, s and b, 5. Using (5.2.2]) we obtain the desired result in this

case. For n > 2 even, these functions C;f, (t) are given by:

s (2(Cha )+ Coy D) Gy (0 Coy ()
¢ m‘( () + Coy 1) ) |

Since (5.2.4)) holds for C’f_lﬂ(t) and C;—rH’U(t), we have a similar estimate for Cj, (t), and

this implies the desired result in this case. When n = 0 we have that

G, ) = (25,0 + O, ) o)

where the function C_; ,(t) is defined by

1 1 20 —1
() = = .
C10(t) 7T(1+(10gt)120 * 0(1—0)>

Using (5.2.4)) and a simple bound for C_; ,(t), we bound Cafg(t) and we conclude. Thefefore,
it follows easily that (5.2.1)) is valid for ¢ > ¢y, where ¢ is sufficiently large, and using the

fact that the functions S, (c,t) are bounded in [3,1 — 8] x [0, tg] we conclude the proof. [

As a simple consequence we have the following estimate

T
f 1S, (0, 1) dt = Oy 5(Tlog T), (5.2.5)
0

uniformly in % <o<1—6<1andT > 2. Although this estimate is weak, it is sufficient
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for our purposes. For the case o = %, better estimates are given by Littlewood [65, Theorem
9 and p. 179] for all n > 0.

5.2.2 Convolution formula

Now, we will obtain convolution formulas for the functions S, (o, t) with certain kernels.
The next lemma was introduced by Selberg [82], and was also used by Tsang to study the
functions S(¢) and S;(¢) [87, 88]. Since we assume the Riemann hypothesis, the factor that

contains the zeros outside the critical line disappears.

Lemma 5.7. Assume the Riemann hypothesis. Suppose that % <o <2, and let K(x + iy)

be an analytic function in the horizontal strip o — 2 < y < 0 satisfying the growth estimate

Vy(x):= max |K(a;+iy)|_0<1>

o—2<y<0 2| log? ||

when |x| — 0. Then for every t # 0, we have

Jm log ((0 + i(t + u)) K (u) du = Z mgﬁing)gml?'(lozgﬂm) + O(Vy(-1)). (5.2.6)
—®© m=2

Proof. See [87, Lemma 5. O

It is clear that the above lemma gives a convolution formula for the function S(c,t). To
obtain a similar formula for the function S, (o,t) when n > 1, we need an expression that

connects the function Sy, (c,t) with log {(s).

Lemma 5.8. For % <o<1andt+#0 we have

S, (o,t) = L im {(ln JOO (o — )" ! log C (o + it) da}.

™ n—1!),
Proof. This follows from Lemma and integration by parts. O

Using this expression we obtain the following convolution formula. This generalizes

Tsang’s conditional formula in [88] (or [9, Eq. (10)].

Proposition 5.9. Assume the Riemann hypothesis and the same conditions for the function
K(z +1iy) as in Lemma . Suppose further that K is an even real-valued function (or odd

real-valued function). Then for % <o <1andt+#0, we have

& 1 & A(m) ~ (logm
JOO Sn(07t+s) K(S) dr T m{z mz :2 m0+zt(logm)n+l K( 2 > }+O”(‘/1/2<t>+” Hl)
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Proof. For the case n = 0, we only need to take imaginary parts in (5.2.6). For n > 1, by
Lemma [5.8] we get

Sp(o,t) =

3|

Im {(ln JQ (a— )" ! log C(ar + it) da} + Oy (1).

n—1!),
Plugging this in Lemma [5.7 we obtain
f Sp(o,t+s) K(s)ds
i 2 1
- J {f (a—0)"" " logCla+i(t+s)) da} (s)ds + On(||K|)
0

n—1)!

mo1 logC a+i(t+s))K(s) ds) da} + On(|IK])

Tm { o), @) ( i: maﬂt logm K<102g7rm>> da} (5.2.7)

+ On(Vl/z + HKH

- -m { =) Z mﬁig)m K <102g7rm> <J2 . da> }

+ On(Vipa(t) + 1K),

=n~

where the interchange of the integrals is justified by Fubini’s theorem, considering the esti-
mates [74, Theorem 13.18, Theorem 13.21]. Using [50} §2.321 Eq.2]) we obtain that

2la—a)"! Bn—1 1S B
=% da=-—_C"= - R (9 gLk
J me “ me(logm)™  m?2 lglo (log m)k“( ) ’

(e

where [ = % This implies that for each m > 2 we get

J e - m%?g%n § O“(M)‘

g

Inserting this in (5.2.7), and considering that || K| < ||K||1, we obtain the desired result.
O

5.3 The resonator

In this section we will construct the resonator. The construction of our resonator is
similar to the resonator developed by Bondarenko and Seip [0, Section 3]. The results

presented here are extensions of their results, for a region near the critical line. The resonator
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is the function of the form |R(t)|?, where

meM’

and M’ is a suitable finite set of integers. Let o be a positive real number and N be a

positive integer sufficiently large, such that

—_

1
<o <

<-4+ —-. 5.3.1
2 * loglog N ( )

N | =

Our resonator will depend on o and V. For simplicity of notation, we write logy x := log log

and logs x := logloglogx. Let P be the set of prime numbers p such that
elog Nlogy N < p < exp ((log, N)I/S) log N log, N. (5.3.2)

We define f(n) to be the multiplicative function supported on the set of square-free numbers
such that

f(p) = ((logN)l"(log2 N)U> 1
' (logg N)1= p? (logp —logy N —logz N)’

for p e P and f(p) = 0 otherwise. For each k € {1,---,[(log, N)l/g]} we define the following

sets:

by = {p : prime number such that e* log Nlogy N < p < e+l log N logy N},

3(log N)?~20

My, := {n € supp (f) : n has at least o, := 2 (log; N2 27
3

prime divisors in Pk},

My, = {n € M}, : n only has prime divisors in Pk}.

Finally, we define the set
[(logy N)'/®]

Mi=swpp (\ | M
k=1

Note that if m € M and d|m then d € M.
Lemma 5.10. We have that |M| < N, where | M| represents the cardinality of M.

Proof. The proof follows the same outline that [7, Lemma 2|. The main difference is the
appearance of the term (logs N)?°~! which is well estimated, whenever (5.3.1)) holds. It

allows us to obtain the same estimate for the cardinality of M as the case o = % By [7,
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Eq. (9)-(10)], we have that

(121) = exp (sttog ~ tog) + 29 + tog),

? <nﬂj 1) S <7:>

for 3n — 1 < m. By the prime number theorem, the cardinality of each Py is at most
eF+11og N. Therefore, using the above inequalities and (5.3.1))

[(logy N)/5] [ay] [(logy N)'/%]
e 15 () ST () e

for1 <y <z and

k=1 j=0 J k=1 Leve]
18
. [(logy N) ]3(10gN)272U l_|_ 3+2logk N (20 — 1) logy, N 4 (2—20)logy N
- & (g NP \k T R 2 K2

+ 3k + log, N)
< exp ((Z + 0(1)> (log N)?727 (logs N)20_1>

< exp ((i + 0(1)> (log N)(logs N)?/ 182 N).

Then, for N sufficiently large we get that |[M| < N. O

Lemma 5.11. For all k = 1,- - -,[(logy N)¥8] we have, as N — oo
1 eF+11log Nlogy N 1
)y 202(1+0(1))J orean W
pep; D e* log N logy N y? logy
where o(1) is independent of k. In particular, we have that
1 1

1
(d + 0(1))W < p;)k e < (2 + 0(1))W, (5.3.3)

for some constant 0 < d < 1.

Proof. Using [74, Theorem 13.1], under the Riemann hypothesis we have

o1
w(x) = dy + O(z"?log z),
(@) = | o A+ O o)

where 7(x) is the function that counts the prime numbers not exceeding xz. Then, using

integration by parts we get
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1 eF+11og Nlogy N 1 eF*11og Nlogy N log y
Z 20 T f 20 dy + 0O f 20+1/2 dy
pep, p eFlogNlogg N Y logy eklogNlogoy N Y

1 eF+11log Nlogy N 1
ol ) [ ek
( (log N)Y4 ) ) Jertog N1og, N 427 logy

Now we can see that

Jeml logNloga N du < e¥log Nlogy N(e — 1) - 2
FlogNlog, N Y27 logy vs (e¥log N logy N)27 log (eFlog Nlogy N) — (logy N)2°

On the other hand, we know that (e¥log N)2°~1 < (logN)* 2 < et for all 1 < k <
[(logy N)V/#]. Therefore

¢ "HlogNlogz N 1 ¢ log N'logy N(e — 1) d
————dy = 2 > ,
cklog Nlog, N Y27 logy (e*+11log N log, N)27 log (ek+11log Nlogy N) = (logg V)20

for some constant 0 < d < 1. O

The following lemma can be considered as an extension of [9, Lemma 4] to the region
(5.3.1]).

Lemma 5.12. We have

; n 2 1 c (lOg N)1—0(10g3 N)O.
Z f(l)2 nez,/\/l f( ) p|2n f(p) pa = (10g2 N)a' )
leN

for some universal constant ¢ > 0.

Proof. The proof is similar to [0, Lemma 4]. For each k € {1, - -,[(log, N)'/8]} we define

the following sets:

d(log N)?>=2¢
12k2(logs N)2—2¢

Ly = {n € supp (f) : n has at most fj := prime divisors in Pk},

where d is the mentioned constant in Lemma [5.11] and
b 1= {n € L : nonly has prime divisors in Pk}.

Finaly, we define the set
[(logy N)'/?]

L=M\ ] L
k=1
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Now to prove the lemma, it is enough to show that

Z ) Z f(n ), as N — o0. (5.3.4)

ngLl
leN

Indeed, using (5.3.4]) and the fact that £L < M we get

707 5, D * S B, 0w Y

nemM p\n nem pln
leN leN
1
= (1 —o0(1)) min
(1=o()mip 2. 77
[(logy N)/%] 2.2
d(log N)*==° 1
- (1 - 0(1)) Z 12k2(logy N)2—20 min o
= g3 N)*727 peri f(p) p

[(logy N)'/#]

o d (log N)>~27 (log N)'
> (=) 2 iog, N m (TN reTiog )
(log N)'=?(logs N)°
(logy N)7 ’

for some constant ¢ > 0. Therefore, it remains to prove (5.3.4). Since

[(logy N)'/¥]

L:=supp (N |J (MpuLy),

k=1
it is enough to prove that when N — oo

[(logy N)'/¥]

I Z > fn) (5.3.5)

TLEL;C

and

S0 Z n§4kf (5.3.6)

First we will prove (5.3.5). For each k € {1,-- -, [(log, N)1/8]} and for any 0 < b < 1 we

have

(1+bf(p)?)
Zf 2n§kf 11 (1+f HEZL: fn pgk 1+ f(p)?)
leN pEP; (5.3.7)
<b_'8kexp<b—1 Z )
pGPk
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Since f(p) < 1, using the left-hand side inequality of (/5.3.3]) we get

IR Wk

p EPk p GPk

~ ((log N)2727(log, N)QJ Z 1
B 2(logg N)2—20 p29 (logp — logy N — logs N)2

loec N 2—20
> (o o ) 0 (0

This implies in (5.3.7)) that

d d (]OgN)2—2cr
Zf( 2n€ZL:kf eXP<<8(b—1)—1210gb+0( )>/<:2(10g3]\7)2_2‘7>

leN

pEPy

Therefore, choosing b close to 1 we obtain 3(b — 1) — 2logb < 0 and summing over k we

obtain (5.3.5). The proof of (| is similar. For each k € {1,-- -, [(logg N )Y 8]} and for
any b > 1 we get

Zf e ZM f(n)? < b= exp ((b— NDY f(p)2>. (5.3.8)

PEP

Using the right-hand side inequality of ([5.3.3)) we have

o 2—20

pEPy

This implies in (5.3.8)) that

o 2—20
Z f 2 Z f(n)* <exp <(2(b —1)—3logh+ 0(1)) kQ(gl(;ggiV])\f)Q_2"> .
nely

Finally, choosing b close to 1 we obtain 2(b— 1) —3logb < 0 and summing over k we obtain
(15.3.6)). O

5.3.1 Construction of the resonator

Let 0 < 8 < 1 be a fixed number and consider the positive real number k = (1 — 3)/2.
Note that x + 8 < 1. Let o be a positive real number and T sufficiently large such that

1
2t loglogT"

N | —
| =

Then we write N = [T"]. Note that o and N satisfy the relation (5.3.1). Now, let J be the
set of integers j such that [(1 + Tfl)], (1 + T*1)3+1) (M # &, and we define m; to be
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the minimum of [(1+771)7, (1 4+ T1)7*1) A M for j in J. Consider the set
Ti={m;:jeJ}

and finally we define

1/2
r(m;) = < > f(n)Q) :
neM,(

(14T 1)~ 1<ng(1+T—1)i+2

for every m; € M'. This defines our Dirichlet polynomial

meM’

Proposition 5.13. We have the following properties:

(i) IM'| <|M| < N.

(ii) Y r(m)> <4 > f(1)?

meM’ leM

(iii) |R(t)|* < R(0)2 <« T% > f(1)”

leM

Proof. (i) and (ii) follow by the definition of M, M’ and Lemma The left-hand side
inequality of (ii7) is obvious. The right-hand side inequality of (iii) follows by (i), (i7) and
the Cauchy-Schwarz inequality. O

5.3.2 Estimates with the resonator

The proofs of the following results are similar to the case ¢ = 1. According to the

2
notation in [9] we write ®(t) = e~*"/2. Then ®(t) = /27 ®(27t).

Lemma 5.14. We have

J_OOOO\R(t)P@( ) at <7 S f(1)

leM

Proof. The proof is similar to [9, Lemma 5] and we omit the details. O

Lemma 5.15. There exists a positive constant ¢ > 0 such that if
i A(m
o+t loo 1m,
=, mT logm
is absolutely convergent and an, = 0 for every m = 2, then

J. conmare(g) axer CEEIRETE (mipay) 51 10
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Proof. The proof follows the same outline of [, Lemma 7], replacing [9, Lemma 4] by Lemma
E120 We omit the details. O

5.4 Proof of Theorem [5.2]

Assume the Riemann hypothesis. We consider the parameters defined in

5.4.1 The case n odd

Let n = 2m + 1. We consider the entire function
K, (2) = (—=1)"logy T ®(27mlogy T 2),

which has Fourier transform

_ RN
Roe) = 13/% ¢><logiT> «1. (5.4.1)

Firstly we need to estimate the following integral

J <f Sn(o,t +u) K ()dU>|R()|<I>< >dt (5.4.2)

This follows by the same computations as in [9, Section 5]. We will divide (5.4.2) into 3
integrals.
1. First integral: Using (5.2.1)), (5.2.5) and Fubini’s theorem we get

T8 (oo
f f S0yt + 1) Ko(w)| du dt
—18

f f'uqﬁ n(0t +u) Kp(u)|du dt+fT; L|>Ta (o,t 4+ u) Ky (uw)|du dt
I

27h T8
n f f K,(u—t)|du dt +
278

278
Ln J 1Sp(o,u)| du + TP «,, TP logT.
_oT8

f log(2]u| + 2)| Ko (u)| du dt
T8 J|u|>T#8

Hence, by Proposition we obtain

J_T; (J_OOOO [Sn(o b+ u) K (u)l du> |R()] <I>< ) dt <, T%1og T R(0)?
o T 10T 3 () (5.4.3)

leM
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2. Second integral: Using the fast decay of ®(¢), (5.2.1)) and Proposition it follows that

f'bmgT (foooow (0.t + 1) Kn(u )\du) |R(t)|2<1><;> at

ko= (log T)?/4 ” o U U 4.
«T g (L>Tlong—oo|S (0.t +u) K,(u)|d @<2T> dt) l;f (5.4.4)
=o(1) Y] f(D)*

leM

3. Third integral:

jTB<|t|<TlogT (j_woo Sn(o,t + u) Kn(u) dU> |R(t)| <I>< ) dt
- jTﬁSltKTlogT (ijétﬂtKQTlogTsn(o-’t ) Ealw) du) R <I>< ) a (5:4.5)

4 J (J (0, t + ) Ko (u) du> R(1) P (t> dt.
TB<|t|<Tlog T \ J{ju+t|<Z2}U{jutt/>2T log T} T

Now using (/5.2.1)) and Lemma the last integral can be bounded by

J J |Sp (o, t + u) Kp(u)| du|R(t)] <I)< )dt
TB<[t|<Tlog T J{|u+t|< T2} o{|u+t|>2T log T}
t
« J J 190 (0 1) Kon(tt — £)| du |R(t)|2¢><> dt
TB<|t|<Tlog T J{ju|<Z2 }U{jul>2T log T} T

(o, u) K ( )]duyR )| <1>( )dt 040
“n fTﬁét|<TlogT| )l (I)< >dt «t Z )

leM

<

JT5<|t§T10gTL|u|< }u{|u\>2T10gT}

Inserting (5.4.6)) in (5.4.5)) we obtain that
” t
f (f Sp(0st + u) K (u) du) \R(t)y%p() &
TEL|t|<T log T —0 T

= oo [t
L"KItKTlogT (ijétJruI@TlogTsn(a’t +u) Ealw) du) Sl (I)<T> dt - (54.7)
T) Y, f?

leM

Therefore, combining (5.4.3), (5.4.4)) and (5.4.7) we have that the integral in (5.4.2)) can be

written as

fw(ﬁosn(a, t+u)Kn(u)du> |R(t)] q>< >dt+0 (T )Z (1)

2

M (5.4.8)
j f Sp(ot + 1) Kon(u) du |R(t)|2<1>(t) dt.
TEL|t|I<T logT T—<|t+u\<2TlogT T

105



Final analysis: Finally, recalling that n = 2m + 1 we consider two cases:

Case 1: m even. In this case note that K, (u) = 0 for all u € R. Then by Lemma and
the fact that S, (o, t) is an even function we obtain in (/5.4.8))

f; Ujo Sulo,t + u) K () du> R(t)]*® (;) dt +On(T) 3, F(1)*

leM

(5.4.9)
< bT< max Sn(a,t)) IO

B
T <t<2TlogT leM

for some constant b > 0. We define

Gn(t) = i A(m) K, (logm> : (5.4.10)

Tmotit(logm)n i "\ 2

By Proposition and (5.4.1)) observe that
Q0
f Sn(o,t +u) Kp(u)du = Re Gy (t) + On (Vij2(t) + 1),
—o0
for t # 0. Therefore, the integral on the left-hand side of ([5.4.9)) takes the form

foooo < JOOOO So(0,t + 1) Kon(u) du> R(1)?® (;) dt

~ Re JO; G (1) R(E) 2D (;) dt + onUw (Vialt) + 1)|R(t)|2<1><;> dt).

—00

(5.4.11)

Using Proposition Lemma and the definition of V},(t) we get

JOO (Vija(t) + 1)|R(t)|2<1>(;> dt « T Y f(1)% (5.4.12)

—®© leM

Therefore using (5.4.11)) and ([5.4.12f) we have

bT ( max Sn(a,t)> > f(1)* = Re fw Gn(t)\R(t)|2q><;> dt

5
Lo <t<2TlogT leM

(5.4.13)
+0a(T) Y F(1)

leM

Now using Lemma (note that I/(;(t) is a positive real function) with

a0, = K logm 1 ’
2 ) w(logm)™

for all m > 2 we obtain
© t
Ref Gn(t)m(t)\?cb() dt
0 T

106



log T) =% (log, T)° —~ /1
>CT(og ) "7 (logg T') min i, ogp
(logy T')° peP

) DU (54.14)

log p leM

for some constant ¢ > 0. Note that (5.3.2)) and (5.4.1]) imply

logp 1 1
min n —» oo T
elog N logy N <p<exp ((log2 N)l/g) log N logy N 2 (log p) ( 082 )

Inserting this in (5.4.14)), we obtain in ((5.4.13]) that (after simplification)

(log T')' 7 (logy ')

max Sn(o,t) = cp (logy T)7+

<t<2TlogT

s + On(1),

for some constant ¢, > 0. After a trivial adjustment, changing 7' to T'/2log T and making

(3 slightly smaller, we obtain the restriction 7% <t < T.

Case 2: m odd. In this case note that K, (u) < 0 for all w € R. Similar to (5.4.9), using
the fact that S, (¢) is an even function we find that

f (J S0yt +u) K. ()dU>|R()<I>< )dt+o DY 50

leM
© (5.4.15)
< bT( max )
T8

2, f0?
<t<2TlogT

leM

for some constant b > 0. Using the function G,, defined in (5.4.10)), by Proposition and
(p-4.1) we get

JOO Sn(o,t +u) Kp(u)du = —Re Gp(t) + On (Vi o(t) + 1).

A similar analysis as in the previous case shows that, by Lemma (note that —I/(\n(t) is

a positive real function)

Re ﬁo G (D) |R()2D (;) dt

log T)' =7 (log3 T)° —~ (1
5 oo T) "7 (logs T) (mm_Kn<ogp> )Zf
(logy T')° peP (logp)™

leM

(5.4.16)

for some constant ¢ > 0. By (5.3.2)) and (5.4.1) we have

log p 1 1
min —-K, —» Toe TV
elog N logy N <p<exp ((log2 N)1/8) log N logy N 2 (log D) (log, )

Inserting this in (5.4.16]) we obtain in ([5.4.15)) that (after simplification)

(log T)' 7 (logy T')”
T)cr-i—n

+ On(1),

max |Sn(o,t)] = ¢
L8 <t<2TlogT A (log,
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for some constant ¢, > 0. After the same trivial adjustment of 7" and § as in the preceding

case we obtain the desired result.
5.4.2 The case n even
We consider the entire function
Kn(2) = (—1)"/2* (logy T)2 2 & (27 log, T 2),

which has Fourier transform

K (¢) = ()2 5<1>< §T> « 1. (5.4.17)

(2m)2(log, T) \1ogy

The analysis in this case is similar to the case n = 2m + 1 with m odd. Using the fact that
Sp(t) is an odd function we obtain that (5.4.15) holds. Using the function G,, defined in

(5.4.10|), by Proposition and (5.4.17)) note that

JOO Sp(o,t +u) Kp(u)du = (—1)"/2Im Gn(t) + Oy, (Vl/g(t) + 1).

This implies that in ((5.4.15) we obtain

o0
bT max ‘Sn(a, t)‘ Z f(l)2 > Re f (—1)n/2+1iGn(t)‘R(t)’2q) (t> dt
T8 <t<2Tlog T leM —0 T

+0,(T) Y FO,

leM

for some constant b > 0. Now, using Lemma (note that i(—l)”/%ll/(\n(t) is a positive
real function for ¢ > 0) it follows that

T(T[3 max }S’n(a,tﬂ) Z f(1)?

I8 <t<2TlogT leM (5.4.18)
1 l1—0o 1 T\ —~ (1 1
o oT (log T") 7 (log3 T) minIm{ (—1)"2K,, o8P Z F(0)?
(logy T)7 peP 2m ) (logp)” leM

for some constant ¢ > 0. By (5.3.2)) and (5.4.17) we have

1 1 1
min Im{(—l)"/ZKn< ng) n} > .
elog N log, N<p<exp ((log2 N)l/s) log N logy N 2m (log p) (10g2 T)

Inserting this in ((5.4.18)) and doing the same procedure as in the previous cases we obtain

the desired result.
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Chapter 6

Zeros of the Riemann zeta-function

and semidefinite programming

This chapter is comprised of the paper [A5]. We improve the asymptotic bounds for
several quantities related to the distribution of the zeros of the Riemann zeta-function (and
other functions), under Montgomery’s pair correlation approach [72]. The main idea is to
replace the usual bandlimited auxiliary functions by the class of functions used in the linear
programming bounds developed by Cohn and Elkies [32] for the sphere packing problem.
It allows one to relate the considered objects to certain convex optimization problems that

can be solved numerically via semidefinite programming.

6.1 The pair correlation of the zeros of the Riemann

zeta-function

In 1973, Montgomery [72] made a major contribution to the study of the distribution
of the zeros on the critical line: the pair correlation conjecture of the zeros of the Riemann
zeta-function. We revisit Montgomery’s work in light of the recent techniques in sphere

packing, to improve some quantities related to the zeros of the Riemann zeta-function.

The Riemann-von Mangoldt formula (2.2.1)), in its weaker form, states that
T
N(T) = (1+0(1))2—10gT. (6.1.1)
T

Let
N*(T) := Z My,

0<y<T

where the sum is over the non-trivial zeros of ((s) counting multiplicitie{] and m, is the
multiplicity of p. It is clear that N(7') < N*(T'). On the other hand, in addition to RH, it

We recall that in the sums related to zeros the summands should be repeated according to the multi-
plicity of the zero. Therefore, the function N*(T') can also be written as >}, <y<T m?, where the sum runs
over the distinct zeros of {(s).
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is also conjectured that all zeros of ((s) are simple, and therefore it is conjecturedﬂ that
N*(T) ~ N(T). (6.1.2)

One line of research to understand and give evidence for this conjecture is to produce bounds
of the form
N*(T) < (C + o(1))N(T), (6.1.3)

with C' > 0 as small as possible, and T' — c0. Under RH, Montgomery [72] was the first to
show the constant C' = 1.3333.... This result was later improved to C = 1.3275 by Cheer
and Goldston [30]. Assuming GRH, Goldston, Gonek, Ozliik and Snyder [47] improved it
to C' = 1.3262.

These results have an important application to estimating the quantity of simple zeros
of ¢(s). Let

NJ(T):= > 1. (6.1.4)

0<y<T
mp=1

The strong relation between N*(T') and N4(T') is due by

N(T)= > (2—m,) = 2N(T) - N*(T). (6.1.5)

0<y<T

Under the pair correlation approach the best previous result known is due by Cheer and
Goldston [30] showing that at least 67.27% of the zeros are simple. Assuming GRH, Gold-
ston, Gonek, Ozlitkk and Snyder [47) showed that at least 67.38% of the zeros are simple.
However, by a different technique, still assuming RH, Bui and Heath-Brown [12] improved
the result to 70.37%, which currently is the best.

In order to study the distribution of the spacing between consecutive zeros of ((s),

Montgomery [72] also defined the pair correlation function

N(T.B):= > 1 (6.1.6)
0<v,y'<T

’ 273
0<’Y —’ng

and conjectured that

N(T,8) ~ N(T) f: {1 - <Sh;;m>2} da.

Note that by (6.1.1) the average gap between zeros is %, hence N (T, 3) is counting zeros
not greater than S times the average gap. To support this conjecture, one wants to produce
bounds of the form

N(T,B) » N(T), (6.1.7)

2Tt can be seen in the notes of D. A. Goldston [45].
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with § > 0 as small as possible, and T — 0. Montgomery [72] showed, under RH and
that 5 can be take as 0.68..., and in [47] it is pointed out that it is not difficult to
modify Montgomery’s argument to derive the sharper constant 8 = 0.6695. This result was
improved by Goldston, Gonek, Ozliik and Snyder [47] with constant 5 = 0.6072. Recently, it
was improved to the constant 8 = 0.6068... by Carneiro, Chandee, Littmann and Milinovich
[15]. Assuming GRH and (6.1.2)), Goldston, Gonek, Ozliik and Snyder showed the constant
0.5781....

The direct application of these results is to estimate how small the gaps between con-
secutive zeros can be related to the total average gap. Ordering the imaginary parts of the

zeros of ((s) in the upper half plane 0 < 3 < 72 <73 < - -, it is clear that

.. lo
liminf (41 — Yn) & n < B.

n—0o0 2T

(6.1.8)

Under the pair correlation approach, using the above mentioned constants, we can obtain
bounds in (6.1.8]). By a different technique, assuming RH, the best result known in (6.1.8)
is due to Preobrazhenskii [78], showing the constant 0.5154.

6.1.1 Main results I

Our main goal here is to improve the previous results in (6.1.3) and (6.1.7)).

Theorem 6.1. Assume the Riemann hypothesis. Then, as T — o0
N*(T) < (1.3208 + o(1))N(T).

Assume the generalized Riemann hypothesis. Then, as T — o0
N*(T) < (1.3155 + o(1))N(T).

Using the relation (6.1.5)) we obtain the following corollary.

Corollary 6.2. Assume the Riemann hypothesis. Then, as T — o0
Ng(T) = (0.6792 + o(1))N(T).

Assume the generalized Riemann hypothesis. Then, as T — o0
Ny(T) = (0.6845 + o(1))N(T).

Using the approach of pair correlation, Corollary is the best result (up to date) on
the percentage of simple zeros of ((s), but as mentioned previously Bui and Heath-Brown

[12] obtained the constant 0.7037 using a different technique. However, we can use Theorem
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[6.1] and the result of Bui and Heath-Brown to improve the proportion of distinct zeros. Let
1

Ny(T):= ) —, (6.1.9)
0<H<T P

be the number of distinct zeros of ((s) with 0 < v < T. Using the inequality

(mp —2)(m, —3)

mMp

2N,(T) < ).

0<y<T

— N*(T) — 5N(T) + 6N4(T).

in conjunction with the estimate
Ny(T) = (0.7037 + o(1))N(T)

and Theorem [6.1] we deduce the following corollary.

Corollary 6.3. Assume the Riemann hypothesis. Then, as T — o0
Ng(T) = (0.8477 + o(1))N(T).

Assume the generalized Riemann hypothesis. Then, as T — o0
Ng(T') = (0.8486 + o(1))N(T).

Using the pair correlation approach, the best previous result known is due to Farmer,
Gonek and Lee [39] with constant 0.8051. By a different technique, assuming RH, Bui and
Heath-Brown [12] improved the constant to 0.8466. To the best of our knowledge, our new

bounds are the current best.

We also obtain improved results for Montgomery’s pair correlation function.

Theorem 6.4. Assume the Riemann hypothesis and . Then, for T sufficiently large
N(T,0.6039) » N(T).

Assume the generalized Riemann hypothesis and . Then, for T sufficiently large
N(T,0.5769) » N(T).

As a simple consequence we obtain the best result in (6.1.8]), under the pair correlation

approach.

Corollary 6.5. Assume the Riemann hypothesis. Then

) log TYn+1

< 0.6039.
2

hﬂgjlf('ywrl — In
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Assume the generalized Riemann hypothesis. Then

1
lim inf (41 — n) 08 Jnil

n—0o0 2

< 0.5769.

6.2 The pair correlation of the zeros of Dirichlet L-functions

We use the framework established by Chandee, Lee, Liu, and Radziwilt [28] to improve
a result related to the simplicity of the zeros of the primitive Dirichlet L-functions.
Let @ be a real-valued smooth function supported in the interval [a,b] with 0 < a < b < 0.
Define its Mellin transform by

Q0
MO(s) = J ()t da.
0
For a character xy mod ¢, let L(s, x) be its associated Dirichlet L-function. Under GRH, all

non-trivial zeros of L(s, x) lie on the critical line Res = 1/2. Let

No@ = Y MR s S a2

Q<qe<2Q SO(Q) x (mod ¢q) Vx

primitive

where W is a non-negative smooth function supported in (1,2), and where the last sum is
over all non-trivial zeros % + iy, of the Dirichlet L-function L(s,x). In [28, Lemma 2.1] it

is shown that

A o0
No(@ ~ 3-Qlog@ | [Ma(ix)’d.

where

A= mw) T] (1—12—1>.

3
p prime p p

Let
Noa@ = Y MWD S paing

Q<q<2Q #(9) x (mod g) x

primitive Simple

In addition, we require that ®(x) and M®(ix) are non-negative functions. We note that
we can also further relax the conditions on ® so to include the function given by M®(ix) =
(sinz/z)?, as was established in [28] and [84].

We want to establish bounds in the form

Nas(Q) > (C + o(1)) Na(Q), (6.2.1)

with C' > 0 as small as possible, and @) — 0. In some sense, (6.2.1) measures (in average)
the proportion of simple zeros among all primitive Dirichlet L-functions. Chandee, Lee, Liu,
and Radziwill [28] showed the constant C' = 0.9166..., assuming GRH. Sono [84] improved

the constant to C = 0.9322..., using similar ideas of the work of Carneiro, Chandee, Littmann
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and Milinovich [I5] for the case of the Riemann zeta-function.

6.2.1 Main result I1

The following theorem improves the results above mentioned.
Theorem 6.6. Assume the generalized Riemann hypothesis. Then, as () — o
No s(Q) = (0.9350 + o(1)) N (Q).

Theorem shows that at least 93.50% of low-lying zeros of primitive Dirichlet L-
functions are simple in a proper sense, under the assumption of the generalized Riemann

hypothesis.

6.3 The pair correlation of the zeros of the derivative of the
Riemann ¢-function
We can extend our analysis to study the zeros of £(s), using the approach of pair

correlation due by Farmer, Gonek and Lee [39]. We recall the definition of the Riemann

&-function

£(s) = %3(3 - ””SP(;) C(s).

It is known that £'(s) has only zeros in the critical strip 0 < Res < 1 and that RH implies
that all its zeros satisfy Res = % Let N1(T) count the number of zeros p; = 1 + iy; of
¢'(s) (with multiplicity) such that 0 <3 < T. It is also known that

T
Ni(T) = (14 o0(1))—logT.
27
We define the function

N{(T) = Z Mpy,

0<’yl <T

where m,,, is the multiplicity of the zero p;. Similarly to the case of the Riemann zeta-

function, we want to establish bounds in the form
N} (T) < (C + o(1)) Ny (T),

with C' > 0 as small as possible, and T" — oo. The previous constant known, assuming RH,
is due by Farmer, Gonek and Lee [39], showing the constant C' = 1.1417. Now, let Ny 4(T')

be the number of simple zeros of ¢'(s) (similar as (6.1.4])). Using the relation
N14(T) = 2N1(T) — N#(T),
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we can obtain bounds to the percentage of the simple zeros of £'(s). For instance, the result

of Farmer, Gonek and Lee [39] implies that more than 85.83% of the zeros of {'(s) are simple.

6.3.1 Main result I11

We improve the previous result on the percentage of simple zeros of £'(s).
Theorem 6.7. Assume the Riemann hypothesis. Then, as T — o
N7 (T) < (1.1175 + o(1)) N (T).
In particular, assuming the Riemann hypothesis we have, as T — o0
N1o(T) = (0.8825 + o(1)) Ny (T).

Also, let Ny 4(T') be the number of distinct zeros of &'(s) (similar as (6.1.9)). It is clear
that the relation 5 )
Ny q(T) = §N1(T) - §N1*(T),

can be derived the same way as for ((s). Then, we have the following corollary.
Corollary 6.8. Assume the Riemann hypothesis. Then, as T — o0

Ny 4(T) = (0.9412 + o(1))Ny(T).

6.4 Strategy oultine

These two problems have been widely studied with several improvements being made
over the years. One of the approaches is to use some suitable explicit formula (relating
sums with integrals) with an auxiliary function f in some class A and produce an inequal-
ity relating the quantity we are interested to bound with some functional Q(f) over A.
Minimizing (or maximizing) the functional over the class A would then produce the best-
bound one can possibly get with that specific approach. Nowadays, this idea is a standard
technique in analytic number theory and has been used in the first chapters of this thesis.
Other applications can be see in the following references: Large sieve inequalities [51], [53];
Erdos-Turdn inequalities [27, 89]; Hilbert-type inequalities [24, 25] 27, 149, 511, 89]; Taube-
rian theorems [51]; Bounds in the theory of the Riemann zeta-function and L-functions
[14, [15, [T6], 17, 18, 19} 20} 29, 311 [44), [46]; Prime gaps [26].

From our point of view, our main contribution connects here. So far the only class A
used for problems and was some Paley-Wiener space of bandlimited approxi-
mations. We relax the bandlimited condition by requiring only certain sign conditions on the
auxiliary function that match exactly with the very same conditions required by the linear

programming bounds for the packing problem (see Section for a detailed explanation).
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This relation is what ultimately inspired and allowed us to perform numerical computa-
tions to find good test functions for the functionals we derive in Section Furthermore,
as far as we know, it is the first time this method is used in the theory of the Riemann
zeta-function.

The strategy can be broadly divided into the following two main steps:

Step 1: Derivation of the optimization problems.

The general strategy to study problems (6.1.3) and (6.1.7)) is based on Montgomery’s

function

F(a,T) = N(lT) D T y(y — ), (6.4.1)

0<y,y'<T

where « € R, T' > 2 and the sum is over pairs of ordinates of zeros (with multiplicity) of

¢(s) and w(u) = 3 qu. We use Fourier inversion to obtain
logT ©
5 o(6-E Jut =) = N0 [ g@F@ i (©42)
0<v,y'<T —0

for suitable functions g, and use some known asymptotic estimate for F(«,T) as T — o0
(which is proven only under RH or GRH). The main goal here is to note that the inequalities
that appear in [28| B0, 39, [47, [72, B4] allows the use of an especial space of functions,
denoted by Arp. In particular, these functions are eventually nonpositive and their Fourier
transforms are positives. After a series of inequalities, we produce a minimization problem

over Ay p for some functional Z.

Step 2: Implementation and numerical issues.

We then approach the problem numerically, using the class of functions Ay p used for the
sphere packing problem in [32] and sum-of-squares/semidefinite programming techniques to
optimize over these functions, as was done in [62] for the binary sphere packing problem.
For the code to generate the semidefinite programs and to perform the post processing we
use Julia [4], Nemo [40] and Arb [57].

Although we will only use this framework to study the case of the Riemann zeta-function,
¢'(s) and a certain average of primitive Dirichlet L-functions, the same basic strategy can

be, in principle, carried out for other functions where we have a pair correlation approach.

6.5 Derivation of the optimization problems

Let Arp be the class of even continuous functions f € L'(R) satisfying the following
conditions:

~

1 7(0) = £0) =1
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2. J? = 0;
3. f is eventually nonpositive.

By eventually nonpositive we mean that f(x) < 0, for |z| sufficiently large. We then define

the last sign change of f by
r(f) =inf{r > 0: f(z) <0 for |z| > r}.

It is easy to show that if f € App, then fe L'(R).
A remarkable breakthrough in the sphere problem was achieved by Cohn and Elkies in
[32], where they showed that if A(R?) is the highest sphere packing density in R? then

ARY) < Q(f)

for any f € Arp(R?) (this is the analogous class in higher dimensions defined for radial

functions f), where

™

o(f) = Wr(f)d.

With this approach they generated numerical upper bounds, called linear programming
bounds, for the packing density for dimensions up to 36 (nowadays it goes much higher)
that improved every single upper bound known at the time and still are the current best.
These upper bounds in dimensions 8 and 24 revealed to be extremely close to the lower
bounds given by the FEg root lattice and the Aoy Leech lattice, suggesting that in these
special dimensions the linear programming approach could exactly act as the dual problem.
This is what inspired Viazovska [90] and Cohn, Kumar, Miller, Radchenko and Viazovska
[34], to follow their program and solve the sphere packing problem in dimensions 8 and 24,
respectively. What is interesting and surprising to us is that the same space Arp can be
used (but with a functional different than Q(f)) to produce numerical bounds in analytic

number theory.

6.5.1 Bounding N*(T') and N(T, )

Ultimately, the functionals we need to define depend on the asymptotic behavior of
F(a,T). To analyze the function N*(7T') we define the functionals

r(f)
Z(f) = r(f) + — f f(@)zda

and

N o () 3r(f)/2 o (32
Z(f) =r(f)+J f(x):vd:v+3ﬁ(f) f(:v)dx—T(f)L(f) f(x)xde.
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Theorem 6.9. Let f e Arp. Assuming RH we have, as T — o0
N*¥(T) < (2(f) + o(1))N(T).

Assuming GRH, for every fized small § > 0 we have, as T — o0

N*(T) < (Z(f) + O(3) + o(1))N(T).

Proof. We start assuming only RH. Refining the original work of Montgomery [72], Goldston
and Montgomery [48, Lemma 8] stated for the function F(«,T) defined in (6.4.1)), that

F(a,T) = (T72°Nog T + |a]) (1 + o(1)), (6.5.1)

~

uniformly for |o| < 1. Let f € Arp and let g(x) = f(x/r(f))/r(f). We can then use the
explicit formula (6.4.2)) in conjunction with the asymptotic formula above to obtain

S o= =) = 5500+ [ teialda

0<y,y'<T

+ L|>1 §(a)F(a,T)dex + o(1)],

where the o(1) above is justified since § is continuous and T2 log T — &y(cr) as T —
(in the distributional sense). Moreover, since F(«,T) is non-negative and g(a) < 0 for

|a] = 1 we deduce that

3 o= Yt =) < 60 50+ 2 [ steada o)

27
0<yY'<T 0

— N(T) [Z(f) —i—o(l)].

On the other hand, clearly we have

5 g<<vw'>1°gT>www'>>g<o> S m,= 20

0<7,y'<T 27 0<y<T r(f)

Combining these results we show the first inequality in the theorem. Assume now GRH. It

is then shown in [47] that for any fixed and sufficiently small 6 > 0 we have

F(a,T) =3 — |a| — o(1), (6.5.2)
uniformly for 1 < |a < 2 — 4, as T — o0. Using this estimate and the fact that §(a) < 0
for |a| = 1 we obtain
3/2-6

9(0) + 2£ g9() (% — a) da + 0(1)

% 3(t=)E July — ) < M)

2
0<y,y'<T
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— N(T) [i(]{)) +o(1) + 0(5)] .

Arguing as before we finish the proof. O

To analyze N (T, 3) we define the function
P(f) =inf{X > 0:ps(\) > 0},

where

Ar(f) .
prY) = 1+ +2T(f)f

T faeds,

0

and the function

P(f) = inf {A > 0:r(A) > 0},

where
A 2r(f) jA/T(f) N 3/ (2r(f)) .
pr(AN)=—-14+—++ fma:d:z:+3f f(x)dx
) R ol R @
3N/ (2r(f)) .
- 27“)(\f)f f(x)xdx.
Ar(f)

Note that these functions are well defined since py and py are of class C*(R) that assume
—1at A =0, and using the fact that f e L'(R) one can show
(N (Y

lim =——— = lim —+ = —— > 0.

A A U r(f) ~
Theorem 6.10. Let f € App and € > 0. Assuming RH and (6.1.2) we have for T suffi-
ciently large

N(T,P(f)+¢)» N(T).

Assuming GRH we have for T sufficiently large
N(T,P(f) + &) » N(T).

Proof. In the following we only exhibit the proof assuming RH since under GRH the proof
is very similar, and the only extra information needed is in (6.5.2)). Let f € Arp and A > 0.
Applying the explicit formula (6.4.2)) for g(x) = f(r(f)z/A) in conjunction with (6.5.1]) we

obtain

5 o(6=E Julty =) = 5D [ gl@)Fla.T)da

0<v,y'<T -
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0
=N(T)[1+pr(A) +0o(1)].

> N(T) [g(o) 42 f la)ada + 0(1)]

Since f = 0, we have |fleo = f(0) = 1. Recall now the pair correlation function N(T', 3)
defined in (6.1.6). We have

> g((v - 7’)IOgT>w(7 -

0<y,y'<T 2m
e () log T ,
—Afuv+2m};qj(W— )L Yty )
0<7—
s nr(f)logT /
avmrz 3 g(a- "G Jut -
0<y—')7/’<\2'"5

log T

< N*(T) + 2N(T, B)
= (1 +0(1))N(T) + 2N(T, B),
where in the last step we have used (6.1.2)). Then, we obtain

Lk

Noting that N (7, 8) increases with 3, we can then choose f arbitrarily close to P(f) and
obtain the desired result. O
6.5.2 Bounding Ny (Q)

Define the following functional over Ay p:

r(f)/2 (f)
o) ="

— z)xdx ) dx.
s @ +2mef()

We have the following theorem.

Theorem 6.11. Let f € App. Assuming GRH, for every fized small § > 0 we have, as
Q— ©

Ng.s(Q) = (2= L(f) + O(5) + 0o(1))Na(Q).
Proof. For @ > 1 and a € R, we define the pair correlation function Fg by

1 W(q/Q) - ol

Fs(Q%, W) = MALAZ Mo iy

»(Q%, W) N<I><Q>Q<q2<m o X(gdq);x (i1)Q
primitive
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Using the asymptotic large sieve, Chandee, Lee, Liu and Radziwill [28] showed the following
asymptotic formula under GRH

F@(QQ,W)
0 -1
= (1+ 0(1))[1 —(1—la)+ + (I)(Q‘“')2logQ<217T LO }Mcb(it)fdt) ] (6.5.3)
+0(2(Q ) 1052 Q).

which holds uniformly for |a] < 2 — 4§, as @ — o0, for any fixed and sufficiently small 6 > 0.
Let

W
Ny = ¥ WS S, Mainy)
Q<q=2@ P\ X (mod ) 7x
primitive

where m,, denote the multiplicity of the nontrivial zero p, = % + iy, of L(s,x). Since

ST M@ )| = Y2 — mp ) [ MB(iny)|
Tx

. Tx
simple

we obtain

Nos(Q) = 2No(Q) — Ng(Q). (6.5.4)

For any g € L'(R) with § € L'(R) we have the following explicit formula (Fourier inversion)

_ A~/ 1
2 W(((]/?) PINNDY M‘I’(iVX)MQ(m;(m(W)
Q=0 P X (mod g) %
primitive

— No(Q) j 9(0) Fa(Q*, W) dov

—00

Letting f € Arp and g(z) = f(r(f)z/(2 — 0)), for any primitive character x (mod ¢) we

obtain

<(’Yx - ’Y;c) 10%@)

2, M(in)Me(i7)) § o

’YX 774(

((’Yx — %) logQ>

= Y [ME (i )P 5(0) + > M (i )MB(i7,) § o

Tx TxFV
) )
W Zmpx|/\/l<1)(z'yx){2.

Tx

=
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This implies that

—~)lo -
y MWy S Metgamens( ) s o)

27
RQ<q<2Q #(4) x (mod q) vx,7%
primitive

On the other hand, observing that

<I>(Q—|0‘\)2 logQ<217T fjooo ‘M@(it)‘Q dt) — d(w),

as Q — oo (in the distributional sense) and that

1/2 > —la| ~1/2 ! dt _ 1/2
(log Q) f 9(0)B(Q 1) da < 210g™1/2Q o) % = 0((log@Q)2).

—(2-9) Q—(2-9) t

we can use the asymptotic estimate (6.5.3|) to obtain

0 2—9
j 9(0)Fa(Q, W) da < f 9(0) Fo(Q*, W) dar

—© —(2-9)

2-4
— 90+ [ ()1 = (1= fal)s) da+ 0(10g @) ) + o(1)

We then conclude that
Ng(Q) < Na(Q) (L(f) +O(8) +o(1)) .

Using (6.5.4]) we finish the proof. O

6.5.3 Bounding N (T

Similarly to the case of the Riemann zeta-function, the functionals that we need to define

depend on the asymptotic behavior of the function Fj(«,T) defined by

Fi(a,T) = N(T)™" 3 T Wy — ), (6.5.5)
0<m<T

where o € R, T' > 2 and the sum is over pairs of ordinates of zeros (with multiplicity) of

¢'(s). To analyze N{*(T) we define the following functional

r(f) r(f)
@ G |

< 2¢cy, () 2k+1
+ Z o 2k+1 T f(x)de,
k=1

Zi(f) =r(f)+
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where ¢, = 22’”1%.

Theorem 6.12. Let f € Arp. Assuming RH, for every fixed small 6 > 0 we have
NT(T) < (Z1(f) + O(8) + o(1))N1(T).

Proof. A result similar to (6.5.1)) for the function Fj(a,T') defined in (6.5.5) is also known
(see [39] Theorem 1.1]), which is the following: for any fixed small § > 0 we have

o]
Fi(a,T) = T2 Nog T + |a| = 4laf* + Y exla* ' + o(1)(1 + T~ 1o T),
k=1

uniformly for |a| < 16, as T — o0, where ¢; = 22F+! (?27]3' The proof then follows the

same strategy as the proof for ((s) and we leave the details to the reader. O

6.6 Numerically optimizing the bounds

Going back to the sphere packing problem, since we obviously have A(R!) = 1, this
shows r(f) = 1 for all f € Arp. The last sign change equals 1 for two (suspiciously)

well-known functions: the hat function and its Fourier transform

sin w€ 2
)

H(x) = (1—|a])s and H(&) = (

and the Selberg’s function with its Fourier transform

. 2 sin(27§) .
_ (sinmz 1 cren ) L=+ = i <1
Sl@) = < T ) (1—22) and - S(¢) = { 0 if [¢] > 1.

In particular, we can use these two functions to evaluate the functionals derived in Section
to obtain bounds, but this does not result in the best possible bounds. To obtain better
bounds we use the class of functions used in the linear programming bounds by Cohn and
Elkies [32] for sphere packing. That is, we consider the subspace Ay p(d) consisting of the

functions f € Arp of the form
f(x) = p(z)e™™, (6.6.1)

where p is an even polynomial of degree 2d.

In [32], optimization over a closely related class of functions is done by specifying the
functions by their real roots and optimizing the root locations. For the sphere packing
problem this works very well, where in R?* it leads to a density upper bound that is sharp
to within a factor 1 + 10791 of the optimal configuration [35]. We have also tried this
approach for the optimization problems in this chapter, but this did not work very well
because the optimal functions seem to have very few real roots, which produces a strange

effect in the numerical computations, where the last forced root tends to diverge when you
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increase the degree of the polynomialﬂ Instead we use sum-of-squares characterizations and
semidefinite programming, as was done in [62] for the binary sphere packing problem.
Semidefinite programming is the optimization of a linear functional over the intersection
of a cone of positive semidefinite matrices (real symmetric matrices with nonnegative eigen-
values) and an affine space. A semidefinite program is often given in block form, which can

be written as

I I
minimize Z tr(X;C;) Z tr(X;A; ;) = b; for j e [m],
=1 i=1
X1,..., X7 € R™" positive semidefinite,

where I € N gives the number of blocks, {C;} < R"*™ is the objective, and {4; ;} < R"*", be
R™ give the linear constraints (for notational simplicity we take all blocks to have the same
size). Semidefinite programming is a broad generalization of linear programming (which we
recover by setting n = 1 in the above formulation), and, as for linear programming, there
exist efficient algorithms for solving them. The reason semidefinite programming comes
into play here, is that we can model polynomial inequality constraints as sum-of-squares

constraints, which in turn can be written as semidefinite constraints; see, e.g., [5].

6.6.1 Proof of Theorems [6.1], 6.6, and [6.7]

To obtain the first part of Theorem from Theorem we need to minimize the
functional Z over the space App(d). We can see this as a bilevel optimization problem,
where we optimize over scalars R > 1 in the outer problem, and over functions f € Az p(d)
satisfying r(f) = R in the inner problem. The outer problem is a simple one dimensional
optimization problem for which we use Brent’s method [10]. The inner problem can be writ-
ten as a semidefinite program as we discuss below. The numerical results suggest that the
optimal R goes to 1 as d — oo (which is itself intriguing and so far we have no explanation),

but for fixed d we need to optimize R to obtain a good bound.

A polynomial p that is nonnegative on [R,c0) can be written as si(z) + (z — R)sa2(x),
where s1 and s9 are sum-of-squares polynomials with deg(s1),deg(s2(x)) + 1 < deg(p); see,
e.g., [77]. This shows that functions of the form (6.6.1]) that are non-positive on [R, ) can

be written as
2

f@) = =(s1(2%) + (@ = B*)sz(a®))e ™"

Let v(x) be a vector whose entries form a basis of the univariate polynomials of degree

at most d. The polynomials s; and sy are sum-of-squares if and only if they can be written
as s;(z) = v(z)T X;v(x) for some positive semidefinite matrices X; of size d + 1. That is,
we can parameterize functions of the form (6.6.1) that are non-positive on [R, ) by two

positive semidefinite matrices X7 and Xy of size d + 1.

31t is worth mentioning that, in a related uncertainty problem, Cohn and Gongalves [33] discovered the
same kind of instability in low dimensions.
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The space of functions of the form is invariant under the Fourier transform. Since
a polynomial of degree 2d that is nonnegative on [0,00) can be written as s3(x) + zs4(z),
where s;(z) = v(z)T X;v(x) for i = 3,4 are sum-of-squares polynomials of degree 2d, we
have that f is of the form

2

f(m) = (83(1}2) + $254(3:2))e_” .

Let 7 be the operator that maps z2* to the function %L;lﬂ(wﬁ), where Ly is the
Laguerre polynomial of degree k with parameter —1/2. Then, for p an even polynomial,
we have that (7Tp)(x)e ™" is the Fourier transform of p(z)e~™". We can now describe the
functions of the form that are non-positive on [R, ) and have nonnegative Fourier
transform by positive semidefinite matrices Xi,..., X4 of size d + 1 whose entries satisfy

the linear relations coming from the identity (X1, ..., Xy) = 0, where
I(Xy,...,X4) =T (- s1(2?) — (22 — R2)32(:L‘2)) - (53(£U2) + m284(x2)).

Here T (—s1(2?) — (22— R?)so(x?)) is a polynomial whose coefficients are linear combinations
in the entries of X7 and X», and the same for s3(2?) + 22s4(2?) with X3 and X,. The linear
constraints on the entries of Xi,..., Xy are then obtained by expressing I(Xi,...,Xy) in

some polynomial basis and setting the coefficients to zero.
The conditions f(0) = 1 and f(R) = 0 are linear in the entries of X; and X, and the

~

condition f(0) =1 is a linear condition on the entries of X3 and X4. Finally, the objective

Z(f) is a linear combination in the entries of X; and Xo, which can be implemented by

1 1
jxme_”2 de = — F(m + ,77:1:2),

using the identity

9rm/2+1/2 )
where T' is the upper incomplete gamma function. Hence, the problem of minimizing Z( f)
over functions f € Ay p(d) that satisfy r(f) = R is a semidefinite program.

To obtain the second part of Theorem from Theorem and to obtain Theorem
from [6.11] we use the same approach with a different functional. To obtain Theorem [6.7] from
Theorem [6.12| we also do the same as above, but now truncate the series in the functional
Z, at k = 15 and add the easy to compute upper bound 107!° on the remainder of the

terms.

Implementation and numerical issues

In implementing the above as a semidefinite program we have to make two choices for
the polynomial basis that we use: the basis defining the vector v(x), and the basis to
enforce the identity I(X7,...,X4) = 0. This choice of bases is important for the numerical
conditioning of the resulting semidefinite program. Following [62] we choose the Laguerre
basis {Ly, Y 2(27mr:2)}, as this seems natural and performs well in practice (it multiplied by

e~™ is the complete set of even eigenfunctions of the Fourier transform). We solve the
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semidefinite programs using sdpa-gmp [75], which is a primal-dual interior point solver
using high precision floating point arithmetic. For the code to generate the semidefinite
programs and to perform the post processing we use Julia [4], Nemo [40], and Arb [57]
(where we use Arb for the ball arithmetic used in the verification procedure). For all
computations we use d = 40. In solving the systems we observe that X; can be set to zero
everywhere without affecting the bounds, so that r(f) = R holds exactly for the function
flz) = (R? — 22)v(2)T Xov(22)e™ ™" defined by X,.

The above optimization approach uses floating point arithmetic and a numerical interior
point solver. This means the identity (0, X2, X3, X4) = 0 will not be satisfied exactly, and,
moreover, because the solver can take infeasible steps the matrices X9, X3, and X4 typically
have some eigenvalues that are slightly negative. In practice this leads to incorrect upper
bounds if the floating point precision is not high enough in relation to the degree d. Here
we explain the procedure we use to obtain bounds that are guaranteed to be correct. This
is an adaptation of the method from [62] and [69].

We first solve the above optimization problem numerically to find R and f for which
we have a good objective value v = L(f). Then we solve the semidefinite program again
for the same value of R, but now we solve it as a feasibility problem with the additional
constraint £(f) < v + 107%. The interior point solver will try to give the analytical center
of the semidefinite program, so that typically the matrices are all positive definite; that is,
the eigenvalues are all strictly positive. Then we use interval arithmetic to check rigorously
that Xo, X3, and X, are positive definite, and we compute a rigorous lower bound b on the

smallest eigenvalues of X3 and Xjy.

Using interval arithmetic we compute an upper bound B on the largest coefficient of
I(0, X5, X3, X4) in the basis given by the 2d + 1 entries on the diagonal and upper diagonal
of the matrix (R? — 2?)v(2?)v(z?)T. If b > (1 + 2d)B, then it follows tat it is possible
to modify the corresponding entries in X3 and X4 such that these matrices stay positive
definite and such that I(0, X2, X3, X4) = 0 holds exactly [69]. This shows that the Fourier
transform of the function f(x) = (R? — x2)v(:c2)Tng(m2)e*”2 is nonnegative.

We use interval arithmetic to compute f(0) = RZ2s2(0), T((R? — 2%)s2(2?))(0), and
Z(f), Z(f), Z1(f), or L(f). We can then compute rigorous bounds by observing that, for
example, the first part of Theorem [6.1] can be written as follows: Suppose f is a continuous

LY(R) function with f(z) < 0 for |#| > R and with nonnegative Fourier transform, then

NH(T) < (f(O)Z( f+ 0(1)> N(T).
f(0)

Remark 6.13. In the link|https: //arziv. org/abs/1810. 08843 we attach the files ‘Z-

40.txt’, ‘tildeZ-40.txt’, ‘L-40.txt’, and ‘Z1-40.txt’ that contain the value of R on the first line

and the matrices Xo, X3 and X4 on the next 3 lines (all in 100 decimal floating point values).

For convenience it also contains the coefficients of f in the monomial basis on the last line

(but these are not used in the verification procedure). We include a script to perform the
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above verification and compute the bounds rigorously, as well as the code for setting up the

semidefinite programs, using a custom semidefinite programming specification library.

Now, we will show these functions (in the monomial basis) that we need to put in

Theorems and to prove Theorems and Since that the coefficients

of the functions are decimal numbers that have around 100 digits, we will truncate them in

the following tables.
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The function fi(x) for the functional Z
In Theorem using the function fi(z) defined by

81 )
f1<$) _ Z ar. $2k e~ T 7
k=0

to evaluate the functional Z we obtain the first affirmation of Theorem [6.1] The coefficients
ap are given in the file ‘Z-40.txt’. The following table contains the first 11 digits of the

coefficients aj, written in the scientific form{’]

k a k ak k a
0 1.00000000000...e4+00 | 27 | - 2.00604252578...e+09 | 54 | 6.31600077580...e—13
1] -5.61930744986...e—01 | 28 8.88765244247...e+08 | 55 | - 3.58176329682...e— 14
2 2.53470012494...e+01 | 29 | - 3.61223860943...e+08 | 56 1.88492736201...e—15
3 | - 5.91540175902...e+02 | 30 1.34839874801...e+08 | 57 | - 9.19771200837...e—17
4 1.00403659527...e4+04 | 31 | - 4.62849221920...e+07 | 58 | 4.15752713885...e—18
5| - 1.23558354977...e+05 | 32 1.46273876941...e+07 | 59 | - 1.73890163846...e—19
6 1.14437313949...e4+06 | 33 | - 4.26102745771...e+06 | 60 | 6.72107084162...e—21
7 | - 8.14064754631...e+06 | 34 1.14544776797...e4+06 | 61 | - 2.39706427262...e —22
8 4.52000281877...e+07 | 35 | - 2.84456407814...e+05 | 62 7.87512213760...c—24
9 | - 1.99244854927...e+08 | 36 6.53237583584...e+04 | 63 | - 2.37859909049...e — 25
10 7.09652171095...e+08 | 37 | - 1.38849606160...e4+04 | 64 | 6.59016933930...e—27
11 | - 2.07779244720...e4+09 | 38 2.73404596754...e+03 | 65 | - 1.67056564436...e —28
12 5.08355055658...e+09 | 39 | - 4.99103491546...e+02 | 66 | 3.86307240298...e—30
13 | - 1.05537806922...e4+10 | 40 8.45281691947...e+01 | 67 | - 8.12108907968...e —32
14 1.88600790950...e+10 | 41 | - 1.32894661939...e+01 | 68 1.54588323804...e — 33
15 | - 2.93980682298...e+10 | 42 1.94064024091...e+00 | 69 | - 2.65213735790...e — 35
16 4.04507506325...e+10 | 43 | - 2.63340360993...e—01 | 70 | 4.07836842393...e—37
17 | - 4.96450359932...e4+10 | 44 | 3.32196895016...e—02 | 71 | - 5.58480037924...e -39
18 5.48089027934...e+10 | 45 | - 3.89688519940...e—03 | 72 6.75672510240...e — 41
19 | - 5.47806082895...e+10 | 46 | 4.25195577287...e—04 | 73 | - 7.15291516397...e —43
20 4.97839424495...e+10 | 47 | - 4.31599240314...e—05 | 74 | 6.54672047966...e —45
21 | - 4.12453522456...e+10 | 48 | 4.07596968487...e—06 | 75 | - 5.10134804489...e —47
22 3.11950633425...e+10 | 49 | - 3.58131005016...e—-07 | 76 | 3.31644721518...e—49
23 | - 2.15534325017...e+10 | 50 2.92738287922...e—08 | 77 | - 1.74948709650...e — 51
24 1.36094861588...e4+10 | 51 | - 2.22572598365...e—09 | 78 7.19154041640...e—54
25 | - 7.85672038705...e4+09 | 52 1.57364385611...e—10 | 79 | - 2.16036249384...e—56
26 4.14918386342...e4+09 | 53 | - 1.03425977054...e—11 | 80 | 4.21713157530...e—59
81 | - 4.01324649596...e—62

4We recall that the notation me+n means m - 10",
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The function f5(z) for the functional Z
In Theorem using the function fy(z) defined by

81 )
fg(x) _ 2 by 22k o= ,
k=0

to evaluate the functional Z we obtain the second affirmation of Theorem lﬁ__._ll The coeffi-
cients by are given in the file ‘tildeZ-40.txt’. The following table contains the first 11 digits

of the coefficients b, written in the scientific form.

k by k by k by
0 1.00000000000...e+00 | 27 | - 5.75974866587...e+07 | 54 5.40068435403...e—14
1 1.06665168220...e—01 | 28 2.45777816880...e+07 | 55 | - 3.23922205805...e 15
2 6.81481916247...e+00 | 29 | - 9.80603175046...e4+-06 | 56 1.80231560087...e — 16
3| - 1.37110374214...e4+02 | 30 3.65016083510...e4+06 | 57 | - 9.29503076196...e — 18
4 2.26128992850...e+03 | 31 | - 1.265620471124...e4-06 | 58 4.43886712924...e—19
5 | - 2.69844166980...e+04 | 32 4.07758498777...e4+05 | 59 | - 1.96064712420...e —20
6 2.38119359029...e+05 | 33 | - 1.22073122870...e+05 | 60 7.99949934378...e —22
7 | - 1.60226943210...e+06 | 34 3.39300155211...e+04 | 61 | - 3.01029190208...e —23
8 8.41843420767...e+06 | 35 | - 8.75415033780...e4+-03 | 62 1.04300993651...e —24
9 | - 3.52227724480...e4+07 | 36 2.09667557301...e+03 | 63 | - 3.32082406067...e —26
10 1.19406304232...e4-08 | 37 | - 4.66253364582...e+02 | 64 9.69393663653...e — 28
11 | - 3.33068477173...e+08 | 38 9.62960956261...e4+01 | 65 | - 2.58777475250...e —29
12 7.74919615522...e+08 | 39 | - 1.84769214729...e4+-01 | 66 6.29840798749...e - 31
13 | - 1.52196020968...e+09 | 40 3.29476957992...e+00 | 67 | - 1.39289627024...e - 32
14 2.55027648723...e+09 | 41 | - 5.46170412293...e—01 | 68 2.78776155288...e— 34
15 | - 3.68102336235...e+09 | 42 8.41897556029...e-02 | 69 | - 5.02590245604...e — 36
16 4.61738945493...e+09 | 43 | - 1.20704049913...e-02 | 70 8.11718658615...e —38
17 | - 5.07627927018...e+09 | 44 1.60990476909...e-03 | 71 | - 1.16677572973...e —39
18 4.93216323989...e4+09 | 45 | - 1.99782398529...e-04 | 72 1.48092961221...e -41
19 | - 4.27111829619...e+09 | 46 2.30692178965...e—05 | 73 | - 1.64382673631...e —43
20 3.32533440042...e+09 | 47 | - 2.47880496990...e—06 | 74 1.57661969041...e —45
21 | - 2.34853701839...e+09 | 48 2.47841742324...e-07 | 75 | - 1.28668759190...e —47
22 1.51810502093...e+09 | 49 | - 2.30562965247...e—08 | 76 8.75590310106...e —50
23 | - 9.05722190738...e4+08 | 50 1.99534288300...e—09 | 77 | - 4.83207038146...e —52
24 5.02326758272...e+08 | 51 | - 1.60603663997...e—10 | 78 2.07680004966...c — 54
25 | - 2.60341739732...e4+08 | 52 1.20189031134...e—11 | 79 | - 6.51937952081...e - 57
26 1.26450831957...e408 | 53 | - 8.35927891328...e—13 | 80 1.32911223372...e - 59
81 | - 1.32027652476...e — 62
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The function f3(z) for the functional £
In Theorem using the function f3(z) defined by

81 )
f3(3€) _ Z cr .’L‘Qk e~ T ,
k=0

to evaluate the functional £ we obtain Theorem The coefficients ¢ are given in the file
‘L-40.txt’. The following table contains the first 11 digits of the coefficients ¢; written in

the scientific form.

k Ck k CL k Ck
0 1.00000000000...e+00 | 27 | - 1.62713819169...e4+09 | 54 1.67488448322...e—13
1| - 1.47953929665...e—01 | 28 6.91432416117...e+08 | 55 | - 9.21143270000...e—15
2 7.46561646903...e4+00 | 29 | - 2.69019242288...e+08 | 56 4.70533150477...e— 16
3 | - 1.41693776067...e4+02 | 30 9.60033249385...e+07 | 57 | - 2.23052537067...e—17
4 2.82315629755...e+03 | 31 | - 3.14758048606...e+07 | 58 9.80276873641...e—19
5 | - 4.16844775995...e4+04 | 32 9.49576219383...e4+06 | 59 | - 3.98948768923...e—20
6 4.42792036366...e+05 | 33 | - 2.63983078885...e4+06 | 60 1.50154512964...e—21
7| - 3.48174087486...e+06 | 34 6.77177665034...e+05 | 61 | - 5.21859627614...e —23
8 2.09053967925...e+07 | 35 | - 1.60491853060...e+05 | 62 1.67189309621...e —24
9 | - 9.86082020920...e4+07 | 36 3.51826021315...e+04 | 63 | - 4.92764518062...e —26
10 3.74601385112...e+08 | 37 | - 7.14144888016...e+03 | 64 1.33308619818...e —27
11 | - 1.17092463108...e4+09 | 38 1.34352537567...e+03 | 65 | - 3.30165720252...e —29
12 3.06697777952...e+09 | 39 | - 2.34468342999...e+02 | 66 7.46377080670...e — 31
13 | - 6.83589677473...e+09 | 40 3.79874157642...e+01 | 67 | - 1.53473749557...e — 32
14 1.31328377541...e4+10 | 41 | - 5.71758267322...e+00 | 68 2.85900983404...e— 34
15 | - 2.19780303480...e+10 | 42 7.99953183571...e—01 | 69 | - 4.80249057795...e — 36
16 3.23153514097...e+10 | 43 | - 1.04092919473...e—01 | 70 7.23417344271...e—38
17 | - 4.20343793764...e4+10 | 44 1.26029040153...e—02 | 71 | - 9.70802347115...e—40
18 4.86364413100...e+10 | 45 | - 1.42024956485...e—03 | 72 1.15148315210...e —41
19 | - 5.02808494687...e4+10 | 46 1.49011074771...e—04 | 73 | - 1.19555396941...e—43
20 4.66133336021...e+10 | 47 | - 1.45583045301...e—05 | 74 1.07357113943...e—45
21 | - 3.88715083841...e+10 | 48 1.32459400923...e—06 | 75 | - 8.21029998894...e —48
22 2.92384944296...e+10 | 49 | - 1.12237508525...e—07 | 76 5.24023483503...e— 50
23 | - 1.98868177565...e+10 | 50 8.85607265152...e—09 | 77 | - 2.71468483935...e — 52
24 1.22595905682...e4+10 | 51 | - 6.50604105163...e—10 | 78 1.09617620394...e —54
25 | - 6.86513734151...e+09 | 52 4.44884923783...e—11 | 79 | - 3.23552971770...e—57
26 3.49949228901...e+09 | 53 | - 2.83056293932...e—12 | 80 6.20724710063...e—60
81 | - 5.80679295834...e —63
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The function f;(x) for the functional 2;
In Theorem using the function f4(z) defined by

81 )
f4(a:) _ Z dk .’L‘Qk e~ ,
k=0

to evaluate the functional Z; we obtain Theorem [6.7] The coefficients dj, are given in the
file ‘Z1-40.txt’. The following table contains the first 11 digits of the coefficients dj written

in the scientific form.

k dy, k d, k dy,
0 9.99999999999...e-01 | 27 | - 1.21739898850...e4-09 | 54 7.33828073532...e—13
1 3.42888040970...e-01 | 28 5.47472801084...e+08 | 55 | - 4.27557647019...e - 14
2 8.62434074947...e+00 | 29 | - 2.26364482361...e+08 | 56 2.31181372249...e-15
3| - 1.92714557575...e+02 | 30 8.61069449683...e4+07 | 57 | - 1.15907009029...e - 16
4 3.95349282450...e+03 | 31 | - 3.01579160626...e+07 | 58 5.38325088226...e - 18
5 | - 6.05529323704...e4+04 | 32 9.73414002879...e+06 | 59 | - 2.31349758399...e 19
6 6.55351358594...e+05 | 33 | - 2.89835879345...e4+06 | 60 9.18795709960...e — 21
7 | - 5.15583483128...e+06 | 34 7.96885439807...e+05 | 61 | - 3.36702063429...e —22
8 3.05343039445...e+07 | 35 | - 2.02512227067...e4+-05 | 62 1.13659437771...e —23
9 | - 1.40321299164...e+08 | 36 4.76126626898...e4+04 | 63 | - 3.52732505443...e —25
10 5.13245942674...e+08 | 37 | - 1.03654777780...e4+-04 | 64 1.00412614146...e — 26
11 | - 1.52644075646...e+09 | 38 2.09123707416...e4+-03 | 65 | - 2.61524107399...e 28
12 3.75986830304...e+09 | 39 | - 3.91277860362...e+02 | 66 6.21332653301...e 30
13 | - 7.79552991505...e+09 | 40 6.79398761236...e+01 | 67 | - 1.34194006086...e —31
14 1.38061105251...e4+10 | 41 | - 1.09541608687...e+01 | 68 2.62424977373...e - 33
15 | - 2.11711001129...e4+10 | 42 1.64086820335...e4+00 | 69 | - 4.62502476396...e — 35
16 2.84693484648...e+10 | 43 | - 2.28455587633...e—01 | 70 7.30586885340...e - 37
17 | - 3.39711275245...e+10 | 44 2.95749901834...e—-02 | 71 | - 1.02762854379...e — 38
18 3.63574085438...e+10 | 45 | - 3.56099424334...e—-03 | 72 1.27697251610...e —40
19 | - 3.52220170924...e+10 | 46 3.98876506824...e—04 | 73 | - 1.38840744239...e —42
20 3.11106477178...e+10 | 47 | - 4.15709505586...e—05 | 74 1.30501681974...e—44
21 | - 2.51798139126...e+10 | 48 4.03140031534...e—-06 | 75 | - 1.04424840952...e —46
22 1.87282572851...e4+10 | 49 | - 3.63774216039...e—-07 | 76 6.97083689452...e —49
23 | - 1.28161059657...e4+10 | 50 3.05406002297...e-08 | 77 | - 3.77555102113...e - 51
24 8.06981195014...e+09 | 51 | - 2.38514645395...e—09 | 78 1.59335518452...e —53
25 | - 4.67342328757...e4+09 | 52 1.73231592460...e-10 | 79 | - 4.91360551692...e — 56
26 2.48807657650...e409 | 53 | - 1.16964668909...e—11 | 80 9.84542414954...e - 59
81 | - 9.61648178295...e—62
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6.6.2 Proof of Theorem [6.4]

To obtain the first part of Theorem from Theorem [6.10] we need to minimize the
function P over the space Arp. We can formulate this as a bilevel optimization problem
in which we optimize over R > 1 in the outer problem. In the inner problem we perform
a binary search over A to find the smallest A for which there exists a function f € App(d)
that satisfies f(R) =0, f(x) <0 for |z| > R, and py(A) > 0.

To get a bound whose correctness we can verify rigorously we replace the constraints
£(0) =1, f(0) = 1, and ps(A) = 0 by f(0) = 1—1071, £(0) = 1410720, and p(A) = 1010
We then use the above optimization approach to find good values for R and A. We then
add 1075 to A and solve the feasibility problem again to get the strictly feasible matrices
X5, X3, and Xy4. By performing the same procedure as in [6.6.1] we can verify that the
Fourier transform of the function f defined by X5 is nonnegative everywhere, and using
interval arithmetic we can check that the inequalities f(0) < 1, f(0) > 1, and pr(A) >0
all hold. Note that this verification procedure does not actually check that A is equal to or
even close to P(f), but the proof of Theorem also works if we replace P(f) by any A
for which pg(A) is strictly positive. To obtain the second part of the theorem, we do the
same except that we replace py by py.

Remark 6.14. In the link|https: //arziv. org/abs/ 1810. 08843 we attach the files ‘P-
40.txt’, ‘tildeP-40.txt’, that have the same layout as the files mentioned in with an
additional line containing the value of A. We again include the code to perform the verifi-

cation and to produce the files.

Now, we will show these functions (in the monomial basis) that we need to put in
Theorem [6.10] to prove Theorem [6.4] Since that the coefficients of the functions are decimal

numbers that have around 100 digits, we will truncate them in the following tables.
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The function f5(x) for the functional P
In Theorem using the function f5(z) defined by

81
f5($) _ Z hk ka efﬂxQ,
k=0

to evaluate the functional P we obtain the first affirmation of Theorem [6.4l The coefficients
hi are given in the file ‘P-40.txt’. The following table contains the first 11 digits of the

coefficients h; written in the scientific form.

k hi k hy, k hy;
0 9.99999999899...e - 01 | 27 | - 2.86914456546...e+08 | 54 6.51474548305...e—14
1 7.94132965649...e—01 | 28 1.25801976387...e4+08 | 55 | - 3.66543897877...e— 15
2 4.58924844700...e4-00 | 29 | - 5.04928972482...e+07 | 56 1.91375946657...e — 16
3| - 5.46240567761...e+01 | 30 1.85867378275...e4+07 | 57 | - 9.26387211404...e - 18
4 4.74094778540...e+02 | 31 | - 6.28582298290...e4-06 | 58 4.15326060530...e—19
5 | - 3.63771002122...e4+03 | 32 1.95614912652...e+06 | 59 | - 1.72248358970...e - 20
6 2.64054225852...e+04 | 33 | - 5.60996740119...e4+05 | 60 6.59919313741...e 22
7 | - 1.78884628040...e+05 | 34 1.48464174938...e+05 | 61 | - 2.33190384609...e —23
8 1.06308836764...e4+06 | 35 | - 3.63011354411...e+04 | 62 7.58632526338...e - 25
9 | - 5.31859854914...e4+06 | 36 8.20999417529...e4+03 | 63 | - 2.26756514046...e — 26
10 2.21249623889...e+07 | 37 | - 1.71922020984...e4+-03 | 64 6.21262812276...e — 28
11 | - 7.67460850361...e4+07 | 38 3.33645434583...e+02 | 65 | - 1.55600621464...e—29
12 2.23846189810...e+08 | 39 | - 6.00567342312...e+01 | 66 3.55164221297...e-31
13 | - 5.54293209856...e+08 | 40 1.00341178482...e+01 | 67 | - 7.36185981921...e - 33
14 1.17615184025...e4-09 | 41 | - 1.55710260797...e+00 | 68 1.38007193483...e — 34
15 | - 2.15678057442...e+09 | 42 2.24552464415...e—01 | 69 | - 2.32858377264...e —36
16 3.44398100572...e+09 | 43 | - 3.01082908649...e-02 | 70 3.51652660973...e — 38
17 | - 4.82117558548...e+09 | 44 3.75483417992...e-03 | 71 | - 4.72135477088...e —40
18 5.95224307789...e+09 | 45 | - 4.35676664728...e—04 | 72 5.59066088338...e —42
19 | - 6.51565440493...e4+09 | 46 4.70438640957...e—05 | 73 | - 5.78159915473...e—44
20 6.35411193002...e+09 | 47 | - 4.72788183876...e—06 | 74 5.15855052456...e —46
21 | - 5.54409593739...e+09 | 48 4.42260311100...e—-07 | 75 | - 3.90982168592...e —48
22 4.34474248411...e4+09 | 49 | - 3.85054353274...e—08 | 76 2.46642462092...e—50
23 | - 3.06885201539...e4+09 | 50 3.11993063978...e—09 | 77 | - 1.25923320536...e — 52
24 1.95997402875...e4+09 | 51 | - 2.35208223876...e—10 | 78 4.99594272182...e - 55
25 | - 1.13514178605...e4+-09 | 52 1.64933364060...e—11 | 79 | - 1.44425015692...e—57
26 5.97765655014...e+08 | 53 | - 1.07530724996...e—12 | 80 2.70454837045...e—60
81 | - 2.46093963203...e — 63
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The function f4(z) for the functional P(f)
In Theorem using the function fg(z) defined by

81
fG(x) _ Z ]k :E2k 6771':1:27
k=0

to evaluate the functional P(f) we obtain the second affirmation of Theorem The
coeflicients j; are given in the file ‘tildeP-40.txt’. The following table contains the first 11

digits of the coefficients ji written in the scientific form.

k Jk k Jk k Jk
0 9.99999999899...e—01 | 27 | - 1.27065723098...e4+09 | 54 3.30671952407...e— 14
1 7.46321420919...e—01 | 28 5.28134626882...e+08 | 55 | - 1.58145385656...e—15
2 1.34437583052...e+01 | 29 | - 2.01523901671...e+08 | 56 6.95427402084...e—17
3 | - 4.49802718765...e4+02 | 30 7.06577362276...e+07 | 57 | - 2.81297135448...e—18
4 9.03498933773...e+03 | 31 | - 2.27824912283...e+07 | 58 1.04880280566...e—19
5 | - 1.20474288673...e4+05 | 32 6.76068228575...e4+06 | 59 | - 3.62221467987...e—21
6 1.13367854426...e+06 | 33 | - 1.84779880130...e+06 | 60 1.16964211898...e —22
7| -7.92467843245...e+06 | 34 4.65488953673...e+05 | 61 | - 3.58400774583...e—24
8 4.28672860773...e+07 | 35 | - 1.08157748267...e+05 | 62 1.06214317301...e—25
9 | - 1.85234402075...e4+08 | 36 2.31946034755...e4+04 | 63 | - 3.09706067285...e —27
10 6.55035956018...e4+08 | 37 | - 4.59373339347...e+03 | 64 8.93850975692...e —29
11 | - 1.93050352411...e+09 | 38 8.40697629773...e+02 | 65 | - 2.52746385116...e—30
12 4.80811884789...e+09 | 39 | - 1.42242137740...e+02 | 66 6.85049985153...e — 32
13 | - 1.02318487175...e+10 | 40 2.22597522485...e+01 | 67 | - 1.73720864386...e —33
14 1.87754961403...e+10 | 41 | - 3.22308549919...e+00 | 68 4.03802844482...e—35
15 | - 2.99498151229...e+10 | 42 4.31918748556...e—01 | 69 | - 8.47147306837...e—37
16 4.18380327494...e4+10 | 43 | - 5.35785142539...e—02 | 70 1.58545800407...e—38
17 | - 5.15364408403...e+10 | 44 6.15282598216...e—03 | 71 | - 2.62161285132...e—40
18 5.63399311209...e+10 | 45 | - 6.54101602948...e—04 | 72 3.79509447524...e —42
19 | - 5.49863231365...e+10 | 46 6.43642772940...e—05 | 73 | - 4.76227643830...e —44
20 4.81684610156...e+10 | 47 | - 5.86090089095...e—06 | 74 5.11962404543...e — 46
21 | - 3.80540307750...e+10 | 48 4.93673398982...e—07 | 75 | - 4.64566920746...e — 48
22 2.72231101464...e4+10 | 49 | - 3.84459071508...e—08 | 76 3.48919510158...e—50
23 | - 1.76950624351...e+10 | 50 2.76641133343...e—09 | 77 | - 2.11093203805...e—52
24 1.04796869377...e+10 | 51 | - 1.83782601851...e—10 | 78 9.88537409836...e — 55
25 | - 5.66748772113...e+09 | 52 1.12623139508...e—11 | 79 | - 3.36246819076...e—57
26 2.80379107554...e4+09 | 53 | - 6.36013436082...e—13 | 80 7.39090043478...e — 60
81 | - 7.88001814579...e—63
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Chapter 7

Appendices

7.1 Prelude

Throughout these appendices we encounter the following setting in multiple situations:

let ¢ > 0 be a given real number and % <o <1 and z > 3 be such that
(1—0)logz > c. (7.1.1)
Let us note that, if 0 < 01, 02 are real numbers, it follows from that
(1 —0)" (log2)® « 9,0, 277 (7.1.2)
In fact, if 61 > 62 we simply observe that
(1 —0)% (logz)? < (1 —0)% (logx)? «4, z17°.
On the other hand, if 0 < 6; < 0, welet £ =60y — 07 = 0 and n = 61 + 20 = 02 + £ to obtain

(1 —0)% (log )™ «.9,.0, (1 — )% (logz)? (1—0)*log a;)f = ((1—0)logz)" «, 2" 7.

We now proceed with the calculus facts required for our analysis.

7.2 Appendix A: Calculus facts

A.1 Let ¢ > 0 be a given real number and m = 0 be a given integer. For % <o<1and

x > 2 such that (1 —o0)?logx > ¢, we have

T 1 -0 -0
f - v e v .
9 ta(log t)2m+2 (1 _ O')(lOg l’)2m+2 m,c (1 _ O-)Z(log .I)2m+3
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Proof. Using integration by parts we get

J "” : dt = z' _ 2177
5 to(logt)?2m+2 ™ (1 —o)(logx)2m+2 (1 — 0)(log2)2m+2 (7.21)
(2m+2) (* 1 " -
(1—-0) Jy to(logt)2m+3
From (|7.1.2)) we have
gl—c 1 Lo
m m,c , 7.2.2
(1 —o)(log2)2m+2 « (1-o0) « (1 —0)?(logx)2m+3 ( )
and
2/3
e = | o dt LS
L to (log t)2m+3 L to (log £)2m+3 + L% to (log t)2m+3
2/3
1 A | T q
< 5= — dt + — dt
(log 2)2m+3 L 1o (log(x2/3))2m+3 L2/3 to (7 0 3)
Jj%(l_o') mlfo
“m0U=g) T A= o)(loga)m
« $1_U
"¢ (1 — o) (log x)2m+3"
The desired inequality follows by combining (7.2.1)), (7.2.2), and ([7.2.3]). O

A.2 Let ¢ > 0 be a given real number and m = 0 and k = 1 be given integers. For

1 <o<1andx>2 such that (1 —o)*logz > ¢, we have

T 1 xl—a 21—0’
dt = —
L t?(klog x + log t)2m+2 (I1—-0)((k+1)logx)?m+2 (1 —o0)(klogx + log2)2m+2

:El—a
+ Om,c<(1 —0)2((k +1)log 1:)2m+3>.

Proof. Using the change of variables y = ¥t and A.1 we obtain
k+1

x 1 x 1
L t?(klog x + log t)?m+2 v ozt y?(logy)2m+2 y

k+1

kiko | [F 1 2a* 1
e - _dy- |
v L v (log y)2m+2 Y L y7 (log y)2n+2 Y

(karl)lfcr

_ .—k+ko (xk+1)170

- [(1 — o) (log z(k+1))2m+2 + Om’c<(1 —0)2(log m(k+1))2m+3>
(2a%)1 (2ak)1-0
(1 — o) (log(2zk))2m+2 * Om’c<(1 - 0)2(log(2xk))2m+3>]
xl*O’ 21*0
(1—0)((k+1)logz)2™+2 (1 —o0)(klogx + log 2)2m+2
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fL’l_U

1
+ Ome <(1 —0)2((k+1)log x)2m+3) + Ome <(1 —0)%(klogx + log 2)2m+3> '

Since

1 22m+3 CCI_J

< m )
(1 — 0)2(klogz + log2)2m 8 = (1— o)2((k + 1) log2)2m+3 ™ (T — 0)2((k + 1) log )23

we obtain the desired result. O

A.3 Letm =0 and k = 0 be given integers. For % <o<1andx =2 we have

dt = -
L t'=o((k + 2)logz — log t)?m+2 o((k+1)logx)?m+2  o((k+ 2)logx — log2)?m+2

i Om<<<k T 1>f:gx>2m+3>‘

k+2

Proof. Let y = *;

. The integral becomes

zF+2/2 1 o 90
x(k+2)af dy - x _
1 yrto(logy)2m+2 o((k+1)logx)?m*t2  o((k + 2)logz — log 2)?m+2
(2m + 2)$(k+2)o J‘J:k+2/2 1
o ki1 ylto(logy)2m+s v

where we have used integration by parts. Finally, the result follows from the fact that

zk+2/2 1 1 Ik+2/2 1
J dy « f — dy
ot y1+o (log y)2m+3 ((k. + 1) log x)2m+3 ki1 y1+o
1
x(k+1)a(<k + 1) log x)2m+3'

¢

O
A4 For%<a<1 and x = 2 we have
= 1 1
2 e A P
k=1 (.13071/2) (U - E) log x
Proof. Using the mean value theorem we have that
= 1 1 1 _ 1
=1 (w /) T (0 —3)ztlogz (00— 3)logx
where ¢ is a point in the interval (0,0 — 1). O
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A.5 Letm >0 be a given integer. For i 5 <0 <1andx>2 we have

90 21—0
2201 ((k + 2)logz — log 2)2m+2 ~ (klogx + log 2)2m+2
3;170'
(1 - 0)2(log z)2m+3’

Lm

and
f} k+1 27 B 21—
= (3,30—1/2)11‘C 22~ lg((k + 2)logx — log2)?m*t2 (1 —o)(klogx + log 2)2m+2
l1—0o
Lm

(1 —0)2(logz)?m+3°

Proof. Using the mean value theorem for the functions y — y?"+2

obtain, for k > 1, that

and y — 2797929 we

90 21—0
22°-1((k + 2)logx — log 2)2+2  (klogz + log 2)2m+2

27 1 1
< _
x20—1 <((k +2)logx — log2)?m*+2  (klogx + log 2)2m+2> ‘

N 1 ( 27 21_g>
(klogz + log 2)2m+2 \ g20—1
29 (((k+2)logz —log2)?™*2 — (klog x + log 2)?™+2
( ((k +2)log z — log 2)2m+2(klog x + log 2)2m+2 )

a:.20’—1

1 21 o .20—1 920
* (klog x + log 2)2m+2 < x2o—1 )
29 (2(2m + 2)(logx —log 2)((k + 2)log z — log 2)?™+1
((k +2)log z — log 2)?m+2(klog x + log 2)2m+2
(20 —1)2'=9(log z — log 2)
(klog x + log 2)2m+2
1 . (20 — 1)
xQU—l(k + 1)2m+3(]0g x)2m+2 (k + 1)2m+2(10g $)2m+1 :

= $20—1

Lm

Therefore, summing over all £ > 1 and using A.4, we arrive at

90 2170'
)k 220-1((k 4+ 2)logx —log 2)2m+2  (klogx + log 2)2m+2

Y k+1 1 (20 — 1) )

+
= (:Ea—l/Q)k (x20—1<k + 1)2m+3(10g$)2m+2 (k+ 1)2m+2(10gm)2m+1

1 & 1 20 — 1
<
x20-1(log )2m+2 Z (x”**l/Q)k(k—i— 1)2m+2 (log x)?m+1 Z xo 1/2

1 IL'I_U xl—a

(log x>2m+2 « (1 _ a)(log :L.)2m+3 « (1 _ 0)2(10g x)2m+3’

<
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which establishes our first proposed estimate. To prove the second, we use the first one and
A .4 as follows

i kE+1 20 B 9l—o
= (xa—l/Q)k 221 a((k + 2)logx — log2)?m*+2 (1 —o)(klogx + log 2)2m+2
1§ b 2 -
o2 (zo- I/Q)k 220-1((k + 2)log x — log 2)2m+2  (klogx + log 2)2m+2
N i k+1 91— - 9l-0o
= (:Ea—l/Q)k o(klogz + log2)?m*+2 (1 —o)(klogx + log 2)2m+2
» a0 20 — 1 i k+1 9l—o
" (1 - 0)2(log m)2m+3 o(l—o0) = ( xg_1/2)k (klog x + log 2)2m+2
xl*ﬂ' 20_ _ 0
« (1 — 0)2(log )2m+3 + (1 —o)( log:L‘ )2m+2 g o 1/2
« v + =
(1 _ 0)2(10g x)2m+3 (1 _ g) (10g x)2m+3
$1_U

<

(1 - 0)2(log z)2m+3"

A.6 For%<o*<lcmd2<n<xwehave

& k+1 k+1
J— k J—
0< Z( 1) ((log nxk) (nxk)afl/Q (log Ik+2) (wk+2)‘71/2>

k=0 n n
1 no—l/?

< — .
no=12logn  (2logx — logn)z2o—1

Proof. See [14, Eq. (2.14), (2.16) and Lemma 6]. O

A.7 Let z,w be complex numbers such that |w| < 25. Then
(log(|z + w| + 3))*® = log(|z| + 3).
Proof. If |z| > 25, then
(log(|z + w| + 3))*® = log(|z| — |w| + 3)(log 3)*® > 4log(|z| — 22) = log(|2| + 3),
since (log3)!® > 4. On the other hand, if |z| < 25

(log(|z + w| + 3))1¢ = (log 3)' > 4 > log(28) > log(|z| + 3).
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7.3 Appendix B: Number theory facts

Recall that, under the Riemann hypothesis, the prime number theorem takes the form
([74, Section 13.1])
Z An) =z + O(:Ul/Q(log 33)2) (7.3.1)

n<e
In what follows we shall use in integration by parts in multiple occasions. Let € > 0 be a
small number and f: Q — R, where Q = {(z,y) e R?; 2<z < w; 1<y <z+2}, bea

function such that y — f(z,y) is continuously differentiable in (1,z + ¢), for all z € [2, o).

Using (|7.3.1)) we obtain

Y An)f(z,m) = L " flavy) dy + 2f(2,2) + O(z'2(logz)? | f(z,z)|)
nsw (7.3.2)

+O(Lx y'?(logy)” ;yf(x,y)l dy)-

We now proceed with the number theory facts required for our analysis. We assume the

Riemann hypothesis in all the statements below.

B.1 Let ¢ > 0 be a given real number and m = 0 be an integer or m = —%. For
1 <o<1andx>2 such that (1 —o)*logz > ¢, we have
Z A(n) :Ulfa L0 < l1-o )
o 2m+2 (] — 2m+2 m,c 52 2m+3 |
= n7(logn)*m+ (1 —o)(log x)?m+ (1 —0)%(logx)?m*
Proof. We will prove the case m > 0 be an integer. The case m = —% need refinement in

the calculus but it follows the same idea. Using (7.3.2)), together with A.1 and ([7.1.2)), we

obtain

A T 1 9l-0o 1/2 1 2
Z o (n)2m+2 - J o 2m+2 dy + 2m—+2 + O( :Lf ( nga;2+2>
n?(logn) 2 Y7 (logy) (log 2) 7 (log z)

n<x
+0 <J y'/2(log y)* dy>
2

xl—a 0 xl—a
T = o)(logam? T U\ (1= 0)2(log )2+

z 1
+ O, (L 7@/”“/2 dy> .

We now analyze the last term. From (|7.1.2)) we have

1
oy L/”(log y)2m+2]

xl—a

z 1 |
— dy<| Tdy<i e : 3.
wa y fy Y <108 Cone 3 fog ) (7:3.3)

and this concludes the proof. O
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B.2 Let ¢ > 0 be a given real number and m = 0 be an integer or m = —%. For

1 <o <1andx>2 such that (1 —o)?*logz > ¢, we have

Z A(n) B xlfcr L0 l1—-0o
x?o‘ 1 nl=o(2logz — logn)2m+2 - o(log )2m+2 m,ce (1 — 0)2(log x)2m+3 )

n<e

Proof. We will prove the case m > 0 be an integer. Using (7.3.2)) together with A.3, we

have

r2o—1 nl— 0(2 logz — logn)2m+2

n<x

1 * 1 29
= d
p20—1 L yl=7(2log z — logy)2m+2 Y * o1 (2logz — log 2)2m+2
+0 (xo—1/2(10g x)?m) +0 (x2a—1 L (log y)?
xlfo xlfa
S o Y (M — o 1§
a(log $)2m+2 < (log .1“)2m+3> ( )
1 X
+0 (1:20_1 L 1/2(10g y)

We further analyze the last term

5

dy> . (7.3.4)

1
oy { 1=7(2log z — log y)Qm”]

|
4
3

1
0y{ = ”(210gw—10gy)2’"+2]

1 T
— J y"/?(log y)*
T 2

dy

i 1
oy | y'=7(2logx — logy)?m+2

« JLE (log y)2 dy
m ), g2o-1 y3/2=7(2log x — log y)2m+2

< f"” (log y)*

9 y20'71 y3/270'(2 log x — log y)2m+2

z 1
<Lyg+1/zdy'

Therefore, using and - in - we obtain the result. O

B.3 Let c > 0 be a given real number and m = 0 be a given integer. For % <o<1

and x = 2 such that (1 — o)?logz > ¢, we have

1 1
ngx (TL) (no(klogx + 10gn)2m+2 - r20—1 nl—a((k + 2) loga: _ logn)2m+2> ‘

xlfo

(1 —0)2(log z)2m+3°

Lm,e

Besides, when % <o <1, we have

1 1
7;35 () (n“(klogx +logn) 201 nl=o((k+2)logz — logn)) |
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ml—o
Lm.c

" (0= 3)(1 - 0)*(logz)*

Proof. We will prove the first result. The second result follows the same outline. Using
(7.3.2), A.2 and A.3 we have, for any k > 1

1 1
A(n
Z ( klogm + log n)2m+2 :L.QU—]. nl_"((k + 2) log x — log n)2m+2>

n<x

1
- d
ya k; 10g T+ log y)2m+2 r20—1 ylfo'((k + 2) logaz _ IOg y)2m+2> Y

1
9 _
* (2" (klogx + log 2)2m+2  g20-121-0((k 4 2)logx — log 2)2"”2)
+0 f y1/2 logy 1
9 ﬁy y° (klog x + log y)?m+2
1
_ dy
x?o—lyl=o((k + 2)log x — log y)2m+2] )
20 —1 xl=o

o(1—o0) ((k+1)logz)?m+2

90 21—0
- (x%_l o((k +2)logz —log2)?m+2 (1 —o)(klogx + log 2)2m+2)

21 o 90
+ —_
<(k10gm +1log2)2m+2  x20-1((k + 2)logx — log 2)2m+2>

.'131_0
+ Om,c<(1 —0)2((k+1) IOgg;)2m+3>

+ O(J y'2(logy)?
2

1
y [ y° (klog x + log y)?m+2

dy) . (7.3.5)

1
- p20-1 y1=7((k + 2)logz — log y)2m+2]

We now sum over k > 1 and analyze each term that appears in (7.3.5).
1. First term: Using A.4 we obtain

i k+1 <20—1 1-o >< 20 -1  a'7° i 1
= (e 1/2 o1 —0o) ((k+1)logx)2m+2 ] = 5(1 — o) (log x)2m+2 = (xa—l/Q)k

xl—a

« (1 —0)2(log z)2m+3"

2. Second and third terms: Using A.5 we obtain

920 21*0
220V o((k + 2)logz —log2)2m+2 (1 — o)(klogx + log 2)2m+2
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N i k+1 21— B 20
(mafl/Q)k (klogx +log2)?m+2  x20-1((k + 2)logz — log 2)?m+2

3. Fourth term:

l1—0o l1—0o

i k+1 T « x
(27~ 1/2 (1—0)2((k +1)logz)?m*3 = (1 —0)?(logx)?m+3’

k:I

4. Fifth term: Using A.4 again we have

o k+1 [T
/2
Y—= ) f (log y)”

k:1

1
oy [ y° (klogx + log y)2m+2

dy

1
 p20-1 y1=7((k + 2)log z — log y)2m+2]

& k+1 (T
=> ’“L y'?(logy)”

kzl(maflﬂ)

2m + 2 n o
ylto(klogz + logy)?m+3  ylto(klogx + logy)2m+2

N 1 2m + 2 l1—0 d
2201\ y2=9((k + 2)log z — log y)2m+3 2= ((k + 2)log z — log y)?m+2 y
o0
< _ lo
kz_:l (mafl/2)k 9 y (log y) yl*to(klogz + logy)?m+3

n 2m + 2 q
2201 y2=9((k + 2) log z — log y)?m+3 y

o k+1 (7 o
12 (100 )2
* ;1 (1,071/2)1‘3 J; y"(logy) (y1+‘7(k:logx + log y)2m+2

_ l1—0 q
2201 y2=9((k + 2) log x — log y)?m+2

0
< _ |
Z xafl/2)k L y"(logy) yto(klogx + log y)?m+3 dy
o0
1 d
+ Z ($U—1/2)kJ; (ogy) ylto(klogz + log y)2m+2 y

0
— 1
* 2 (xa—l/Q)kL (logy)* yt+o(klogx + logy)?m+2

l1—0 d
2201 y2=o((k + 2) log x — log y)?m+2

o0
k+1 v V2 ( dm + 4 >
) AR 1 d

k=1
o k+1 [T 20 — 1
Tt /2 2
+ 1 d
,§<xa-1/z)kL o080 (s )
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o0}
k+1 7 (logy)? 1
1—
+ ( o) Z (950—1/2)kL yl/2 yo (klog x 4 log y)2m+2

1
g2l yi= "((k: +2)logx — log y)2m+2> dy

N i E+1 r 1
(xa—l/Q)k 9 \y%(klogx + logy)?m+2

1
d
20— Lyl=o((k + 2)log x — log y)2m+2> y

o0

v k+1  [* 1
d .3.
« L g2 YT ,;1 (zo-1/2)" L <y°'(klogm + log y)2m+2 (7:3.6)

1
— dy.
w20 lyl=o((k + 2)log x — log y)2m+2> Y
We can see that the last sum already appeared in our analysis, in the first, second and fourth

terms treated above. Therefore, an application of (|7.3.3)) in ((7.3.6|) concludes the proof. [J

B4 F0r0<ﬁ<% and r = 2, we have

Z A(n) (xﬂ nﬁ> _ 28242 — 212=BB (L + ﬁ)Q + 212400 (1 5)2

B8 B 1
n1/2 1_62

n<z n? a2l
@) (5 27 (log a:)4> .

Besides, for 0 < 3 < 3 L and x = 2 such that (% — B)?logz > ¢, we have

A(n) (2 nP\  2p2!/2 Bzl/?
% (- 5) = 15 O (g es)

n<x 2

Proof. We will prove the first result. The second result follows using the mean value theorem.

Using (7.3.2)) we have that

Z A(n) <xﬁ _ nﬁ> _ j“? ( P B x B > dy + 91/2=B .8 _ 91/2+B,—5
<z nt/2 \nf  af o \yBt12  y1/2-5
=GB (B3
+ 0 (L y5+3/2 o y3/2—5 (log y) dy
z'/2 21/2=B 8 z1/? 9B+1/2,—f
- - +
% B % -p % + 5 % + 8
4+ ol/2=B,B _ 9l/248,—B
> ((5+B)2F (3PP
o (j ( ) e : y1—B (logy)®> dy | . (7.3.7)

2




Using the mean value theorem for the function ¢ — (% + t)zt we find

2 2 Yy Y

Jx ((5 + B’ (3-B)a"
1-p

) (logy)* dy < r (@ +B)z’ (3= B)a’

) (logy)* dy

< [(% + B)mﬁ -(3- B)x_ﬁ](logx)?’

« B’ (logz)*. (7.3.8)
The desired estimate follows from (7.3.7]) and ([7.3.8)). O
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