Citas bibligráficas
Cordero, S., Urco (2023). Sistema de predicción de riesgos de accidentes laborales en el sector manufactura utilizando técnicas de redes bayesianas y árbol de decisión [Tesis, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/669200
Cordero, S., Urco Sistema de predicción de riesgos de accidentes laborales en el sector manufactura utilizando técnicas de redes bayesianas y árbol de decisión [Tesis]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2023. http://hdl.handle.net/10757/669200
@misc{renati/407804,
title = "Sistema de predicción de riesgos de accidentes laborales en el sector manufactura utilizando técnicas de redes bayesianas y árbol de decisión",
author = "Urco Cordero Jose Luis Ivan",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2023"
}
The purpose of this document is to propose a risk prediction system for occupational accidents, which allows anticipating the incidents or accidents at work. The proposed solution is focused on companies in the manufacturing sector of Peru, which is one of the sectors with a 23% accident rate. For the prediction analysis, existing data of incidents occurring in the work area will be used. The system will analyze the incidences, workers ' behaviors and object defects, within the labor area. Later the information will be analyzed by the system and as a result will be obtained indicators that will be able to be displayed in command frames. These indicators will show the risks and an immediate action plan, in this way the managers will be able to take control in real time on the risk, and the work accidents will be avoided. For the prevention analysis, the Bayesian Networks and Decision Tree algorithm will be used.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons