Citas bibligráficas
Quijano, M., Crisostomo, D. (2023). Modelo predictivo para el mantenimiento preventivo de computadoras [Trabajo de investigaciòn, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/667740
Quijano, M., Crisostomo, D. Modelo predictivo para el mantenimiento preventivo de computadoras [Trabajo de investigaciòn]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2023. http://hdl.handle.net/10757/667740
@misc{renati/405000,
title = "Modelo predictivo para el mantenimiento preventivo de computadoras",
author = "Crisostomo Mamani, David Jesus",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2023"
}
Companies come to use computers and/or laptops for long periods of time depending on the work area, but it is not taken into account that the constant use of the equipment reduces its expected life time, causing the system to fail, slow down , overheating of the equipment, hardware or software problems among other variables that can cause long-term problems such as damage to data files, delays in the delivery times of urgent work or deliverables, and loss of daily user time due to delays slow. For the planning of the research questions, the most important points were defined, such as prediction techniques for the analysis of the collected data, problems that can affect the useful life of the equipment, prediction technologies for the prediction or collection of data. , the algorithms for the prediction of maintenance and the best option for the validation of the efficiency of the predictive model. The prediction techniques and models used for computer maintenance are mostly data mining and anomaly detection, technological models are also described and the use of data-based machine learning techniques is proposed to prioritize the extension of equipment life, in addition to highlighting algorithms and types of validation used in computer maintenance to predict failures and prolong the useful life of equipment.
IMPORTANTE
La información contenida en este registro es de entera responsabilidad de la universidad, institución o escuela de educación superior que administra el repositorio académico digital donde se encuentra el trabajo de investigación y/o proyecto, los cuales son conducentes a optar títulos profesionales y grados académicos. SUNEDU no se hace responsable por los contenidos accesibles a través del Registro Nacional de Trabajos de Investigación – RENATI.