Citas bibligráficas
Ayala, M., Calderón, J., Núñez, F., Rivera, T., Rodríguez, J. (2021). Aplicación de Data Science para el pronóstico de las devoluciones en soles de los cinco principales clientes de la empresa GSK [Trabajo de investigación, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/660233
Ayala, M., Calderón, J., Núñez, F., Rivera, T., Rodríguez, J. Aplicación de Data Science para el pronóstico de las devoluciones en soles de los cinco principales clientes de la empresa GSK [Trabajo de investigación]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2021. http://hdl.handle.net/10757/660233
@misc{renati/399671,
title = "Aplicación de Data Science para el pronóstico de las devoluciones en soles de los cinco principales clientes de la empresa GSK",
author = "Rodríguez Chávez, Juan Ernesto",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2021"
}
The present research seeks to analyze the performance of the return of pharmaceutical products by the main customers of the company GlaxoSmithKline - GSK during the period January 2019 to June 2021, taking into consideration the different variables that involve their behavior. The objective of the project is focused on generating a data modeling that allows to provide timely information to the company, so that it can generate knowledge and establish strategies to solve the problem. For this, the methodology used to develop the research is a predictive approach, since it helped us to describe, understand and propose solutions to the identified problem. A theoretical framework was developed to help us understand the business and the sector in which it is located, as well as the description and presentation of the company. In addition, we proceeded with the understanding of the business, supported with data, which will give us a solid basis to define the problem and establish the objectives to be achieved. The supervised technique used to solve the problem was multiple linear regression, which allowed us to know the variables that answer our data science question, which are determined by 10 independent variables. Different visualizations were presented to represent the findings obtained.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons