Bibliographic citations
Santos, G., Román, D. (2021). Propuesta de concreto f’c = 280 kg/cm2 con la adición de caucho y microsílice como reemplazo parcial del agregado fino y cemento para la construcción de edificios multifamiliares sostenibles en la ciudad de Lima [Tesis, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/659187
Santos, G., Román, D. Propuesta de concreto f’c = 280 kg/cm2 con la adición de caucho y microsílice como reemplazo parcial del agregado fino y cemento para la construcción de edificios multifamiliares sostenibles en la ciudad de Lima [Tesis]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2021. http://hdl.handle.net/10757/659187
@misc{renati/398718,
title = "Propuesta de concreto f’c = 280 kg/cm2 con la adición de caucho y microsílice como reemplazo parcial del agregado fino y cemento para la construcción de edificios multifamiliares sostenibles en la ciudad de Lima",
author = "Román Acuña, Daniel Augusto",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2021"
}
In recent years, population growth has represented an engineering challenge to provide quality of life to people through the construction of multi-family buildings made of reinforced concrete. However, these produce 36% of energy consumption and 39% of CO2 emissions worldwide. In this way, Peru in 2019, there was an estimated 10.6 million tons of cement and a consumption of 74.2 million tons of sand and stone, being harmful to the environment. On the other hand, disused tires have increased in recent years, with an estimated 50 thousand tons projected for 2020; once discarded, they generate harmful effects for the environment, either by natural disintegration or by burning. That said, the research project aims to provide a proposal to reduce the environmental impact by implementing rubber, from the recycling of tires, and microsilica as a partial replacement for sand and cement respectively, in order to obtain eco-friendly mix designs that comply with the requirements of resistance and durability to be used in vertical structural elements. In this research, recycled rubber was used in 0, 5, 10 and 15% and microsilica in 2% as a partial replacement for sand and cement respectively. In this way, 10 concrete mix designs were evaluated in a fresh state, analyzing their slump properties, temperature, air content and unit weight; and in the hardened state, concerning its resistance to compression and traction. In addition, a mathematical model was used to determine its durability based on the degree of permeability to chloride ion. Finally, the results of resistance and properties in fresh state were collected, the analysis of the cost per m3 of design, the amount of CO2 emissions was added and based on these criteria a ranking was carried out in order to obtain three optimal mixtures. The results indicate that concrete with rubber and microsilica in a fresh state increases slump over time and air content and decreases density. In the hardened state, the resistance to compression, traction and durability decrease. In addition, costs with respect to the conventional one by up to S / 39.50 and the carbon footprint is reduced by up to 56.19 kg CO2 per cubic meter when 15% of sand is replaced by rubber and 2% of cement by microsilica.
This item is licensed under a Creative Commons License