Citas bibligráficas
Ricce, E., (2021). Pronóstico de demanda altamente variable e intermitente usando un modelo básico de Red Neuronal Artificial para disminuir el riesgo de rotura de stock de una compañía que abastece productos en Sudamérica [Trabajo de Suficiencia Profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/657936
Ricce, E., Pronóstico de demanda altamente variable e intermitente usando un modelo básico de Red Neuronal Artificial para disminuir el riesgo de rotura de stock de una compañía que abastece productos en Sudamérica [Trabajo de Suficiencia Profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2021. http://hdl.handle.net/10757/657936
@misc{renati/397644,
title = "Pronóstico de demanda altamente variable e intermitente usando un modelo básico de Red Neuronal Artificial para disminuir el riesgo de rotura de stock de una compañía que abastece productos en Sudamérica",
author = "Ricce Medina, Edgar Oscar",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2021"
}
An accurate forecast of the demand is very important to efficiently manage inventories of product’s warehouses. A stock breakage affects to the company’s profits, commercial relationships with customer and increases the risk of losing market share. Given the high variability of demand, caused by highly variable and intermittent emergency orders, a basic Artificial Neural Network (ANN) model is proposed as the basis for forecasting the demand for emergency orders and improving the forecast accuracy. Through the historical information of the urgent orders and the root cause analysis of stock breakages, an RNA model was built to forecast the occurrence and the volume of emergency orders. This forecast allows to order, on time, a sufficient quantity of product to the distribution center in North America, in order to reduce the risk of out of stock in the local warehouse by 91.1%. The model was validated through simulations, using the inverse transformation method and the benefits of the model were confirmed through a cash flow when comparing the scenarios with and without the use of the model, obtaining a rate of return on investment greater than 20%. In addition, the results of a pilot are shown, where all the urgent requests were attended, avoiding the stock breakages.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons