Bibliographic citations
Cordova, K., Mori, A. (2021). Modelo matemático para la predicción de la Capacidad de Soporte (CBR) en suelos expansivos estabilizados con cenizas de cáscara de arroz y cal a partir de sus propiedades índice y de compactación [Tesis, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/657405
Cordova, K., Mori, A. Modelo matemático para la predicción de la Capacidad de Soporte (CBR) en suelos expansivos estabilizados con cenizas de cáscara de arroz y cal a partir de sus propiedades índice y de compactación [Tesis]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2021. http://hdl.handle.net/10757/657405
@misc{renati/396931,
title = "Modelo matemático para la predicción de la Capacidad de Soporte (CBR) en suelos expansivos estabilizados con cenizas de cáscara de arroz y cal a partir de sus propiedades índice y de compactación",
author = "Mori Montalvo, Azucena Flor",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2021"
}
The main indicator to evaluate the quality of the soil as a subgrade in pavement design is the California Bearing Ratio (CBR). In many cases, it is not possible to obtain them by testing, at least at the required frequency, and they are very expensive. Therefore, the need to quantify this parameter through mathematical models that use easily determinable properties and will evaluate the effectiveness of a proposed stabilization solution. The purpose of this research work is to develop practical tools for the prediction of the CBR in expansive soil post stabilization with rice husk ash and lime. It is proposed to obtain mathematical models based on multiple linear regression using their index (% F, IP) and compaction (OCH, MDS) properties, which were generated by applying the SPSS Statistics software, whose resulting equation was: 〖CBR〗_f=46.116-0.526 %F+0.034 IP+0.218 OCH+5.06 MDS, which presents a very high correlation with R = 0.975 and an excellent goodness fit of R2 = 0.95. This means that the CBR response variable is 95% explained by the predictor variables %F, IP, OCH and MDS. The proposed regression model was applied to a section of the PE-8B highway in the San Martín region where it was found that the CBR value was found on average 272% when stabilized with the suggested study materials.
This item is licensed under a Creative Commons License