Buscar en Google Scholar
Título: Modelamiento hidrológico de caudales medios mensuales en cuencas sin información hidrométrica aplicando el método Lutz Scholz y las redes neuronales artificiales, en la microcuenca Huajuiri - Oropesa - Antabamba - Apurímac
Otros títulos: Hydrological modeling of monthly average flows in basins without hydrometric information applying Lutz Scholz method and artificial neural networks, in Huajuiri micro basin - Oropesa - Antabamba - Apurímac
Campo OCDE: http://purl.org/pe-repo/ocde/ford#2.00.00; https://purl.org/pe-repo/ocde/ford#2.01.01
Fecha de publicación: 30-dic-2020
Institución: Universidad Peruana de Ciencias Aplicadas (UPC)
Resumen: El problema central planteado en la presente tesis de investigación es la falta de información hidrométrica en algunas cuencas del Perú, en este caso en la microcuenca Huajuiri, localizado en el distrito de Oropesa, provincia de Antabamba, departamento de Apurímac; puesto que al existir un déficit de estaciones hidrométricas respecto a la cantidad de cuencas existentes a nivel nacional, la información hidrométrica es insuficiente y deficiente, lo que trae como consecuencia no contar con datos como los caudales medios mensuales, información hidrológica relevante para poder conocer la disponibilidad del agua en la cuenca para efectuar la distribución del recurso hídrico de acuerdo al requerimiento de las comunidades campesinas aledañas a la fuente de agua, es útil para diseñar futuras obras hidráulicas, así como para realizar proyecciones respecto al comportamiento hídrico de la cuenca. Es por esta razón que se plantea el cálculo de los caudales medios mensuales en cuencas que no disponen de datos hidrométricos, utilizando el método Lutz Scholz y las redes neuronales artificiales. En la cuenca con información hidrométrica (La Angostura) con los modelamientos hidrológicos planteados, se obtuvieron valores cercanos a los caudales medios mensuales medidos. Sin embargo, en la cuenca sin información hidrométrica (Huajuiri), la inclusión en el modelamiento hidrológico de las redes neuronales artificiales permitió obtener valores más cercanos a los aforos realizados, que solamente aplicando el método Lutz Scholz.

Central problem exposed in this thesis is lack of hydrometric information in some basins of Peru, in our case in Huajuiri micro basin, located in Oropesa district, Antabamba province, Apurímac department, there is a deficit of hydrometric stations with respect to the number of existing basins at national level, hydrometric information is insufficient and deficient, which results in not having data such as average monthly flows, relevant hydrological information to be able to know the water availability of basin in order to distribute water according to requirements of rural communities surrounding the water source, it is useful to design future hydraulic construction, as well as to carry out projections regarding the water behavior of basin. It is for this reason that calculation of average monthly flows in basins without information is proposed using Lutz Scholz method and artificial neural networks. In basin with hydrometric information (La Angostura), with proposed hydrological modeling, values were obtained close to average monthly flows. However, in basin without hydrometric information (Huajuiri), inclusion in hydrological modeling of artificial neural networks allowed obtaining values closer to flow measurement, than only by applying Lutz Scholz method.
Enlace al repositorio: http://hdl.handle.net/10757/656781
Disciplina académico-profesional: Ingeniería Civil
Institución que otorga el grado o título: Universidad Peruana de Ciencias Aplicadas (UPC). Facultad de ingeniería
Grado o título: Ingeniero Civil
Fecha de registro: 19-jul-2021



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons