Citas bibligráficas
Hidalgo, I., Solano, P. (2019). Evaluación de métodos de clustering para el pronóstico de ventas en empresas productoras y distribuidoras de alimentos procesados [Tesis, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/655895
Hidalgo, I., Solano, P. Evaluación de métodos de clustering para el pronóstico de ventas en empresas productoras y distribuidoras de alimentos procesados [Tesis]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2019. http://hdl.handle.net/10757/655895
@misc{renati/395254,
title = "Evaluación de métodos de clustering para el pronóstico de ventas en empresas productoras y distribuidoras de alimentos procesados",
author = "Solano Barragán, Patricio Alonso",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2019"
}
Having a successful sales forecast is an essential issue in manufacturing and distributing companies, since this impacts the decision-making related to demand, inventory management, supply, distribution and product assortment, as well as other areas of the business such as finance, marketing, operations and customer service. However, currently, in most cases, sales forecast are based on individual product analyzes, but not on clustering techniques, which would reduce error and be more accurate in their forecasts. Therefore, the present work proposes to evaluate and compare the impact of the precision of the sales forecasts between the traditional method, simple linear regression with time series, and the clustering methods such as k-means and Ward. The investigation scope will be the five main products of an important manufacturer and distributor of processed foods in Peru. The indicators that will be used to identify the most accurate method will be the mean absolute deviation (MAD) and mean square errors (MSE).
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons