Citas bibligráficas
Sanchez, A., Serpa, S. (2020). Aplicación de redes neuronales convolucionales para la emulación del modelo psicoacústico MPEG-1, capa I, para la codificación de señales de audio [Tesis, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/652711
Sanchez, A., Serpa, S. Aplicación de redes neuronales convolucionales para la emulación del modelo psicoacústico MPEG-1, capa I, para la codificación de señales de audio [Tesis]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2020. http://hdl.handle.net/10757/652711
@misc{renati/391250,
title = "Aplicación de redes neuronales convolucionales para la emulación del modelo psicoacústico MPEG-1, capa I, para la codificación de señales de audio",
author = "Serpa Pinillos, Sergio André",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2020"
}
The present work proposes 4 encoder alternatives, inspired in the MPEG-1, layer I encoder described in the ISO/IEC 11172-3 standard. The problem addressed here is the requirement of explicitly defining a psychoacoustic model to code audio, instead replacing it by neural networks. All the proposals are based on multiscale convolutional neural networks (MCNN) that emulate the psychoacoustic model 1 of the referred encoder. The networks have 32 inputs that map the 32 subbands of the sound pressure level (SPL), and a single output that corresponds to each of the 32 subbands of either the signal-to-mask ratio (SMR) or the bit allocation vector. Thus, an encoder is composed of a set of 32 neural networks. The validation process took the first 10 seconds of 15 randomly chosen songs of 10 different musical genres. The audio signal quality of the proposed encoders was compared to that of the MPEG-1, layer I encoder, using the ODG metric. The encoder whose input is the SPL and whose output is the SMR, proposed by Guillermo Kemper, yielded the best results for 96 kbps and 192 kbps. The encoder named “SBU1” had the best results for 128 kbps.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons