Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Ayala, S., Vallejos, A. (2020). Análisis de pandeo de elementos finitos de vigas Timoshenko [Trabajo de investigación, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/648877
Ayala, S., Vallejos, A. Análisis de pandeo de elementos finitos de vigas Timoshenko [Trabajo de investigación]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2020. http://hdl.handle.net/10757/648877
@misc{renati/386800,
title = "Análisis de pandeo de elementos finitos de vigas Timoshenko",
author = "Vallejos Torres, Augusto Leonardo",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2020"
}
Título: Análisis de pandeo de elementos finitos de vigas Timoshenko
Otros títulos: Buckling finite element analysis of Thimoshenko beams
Palabras clave: Teoría de Timoshenko; Modelo computacional; Estabilidad; Tymoshenko's theory; Computational model; Stability
Fecha de publicación: 20-ene-2020
Institución: Universidad Peruana de Ciencias Aplicadas (UPC)
Resumen: La investigación desarrolla un modelo computacional para el cálculo de cargas y modos de pandeo en vigas (materiales isotrópicos y homogéneos). La formulación se basa en el campo de desplazamiento según la teoría de Timoshenko, que se evalúa por principio de trabajo virtual. El problema del pandeo se establece mediante la teoría de la estabilidad basada en una formulación variacional propuesta por Trefftz. El análisis de pandeo de estabilidad está compuesto por un estado fundamental y un estado incremental. El primero es generado por una carga de compresión y segundo por una perturbación. El modelo matemático se ha generado utilizando la formulación débil de Ritz Galerkin basada en un modelo de elementos finitos. Se obtendrán cuatro modos principales de pandeo y su respectiva carga a través de valores y vectores propios. Finalmente, los resultados numéricos se verifican mediante ejercicios de evaluación comparativa de la literatura.
The research develops a computational model for the calculation of loads and buckling modes of beams (isotropic and homogeneous materials). The formulation is based on displacement field by Timoshenko theory, which is evaluated by virtual work principle. Buckling problem is established by stability theory based on a variational formulation proposed by Trefftz. The stability buckling analysis is composed by a fundamental and an incremental state. First is generated by a compression load and second by a perturbation. The mathematical model has been generated using Ritz Galerkin's weak formulation based on a finite element model. Four main modes of buckling and their respective load will be obtained through eigenvalues and eigenvectors. Finally, numerical results are verified by benchmarking exercises that have been found in the literatura.
The research develops a computational model for the calculation of loads and buckling modes of beams (isotropic and homogeneous materials). The formulation is based on displacement field by Timoshenko theory, which is evaluated by virtual work principle. Buckling problem is established by stability theory based on a variational formulation proposed by Trefftz. The stability buckling analysis is composed by a fundamental and an incremental state. First is generated by a compression load and second by a perturbation. The mathematical model has been generated using Ritz Galerkin's weak formulation based on a finite element model. Four main modes of buckling and their respective load will be obtained through eigenvalues and eigenvectors. Finally, numerical results are verified by benchmarking exercises that have been found in the literatura.
Enlace al repositorio: http://hdl.handle.net/10757/648877
Disciplina académico-profesional: Ingeniería Civil
Institución que otorga el grado o título: Universidad Peruana de Ciencias Aplicadas (UPC). Facultad de ingeniería
Grado o título: Bachiller en Ingeniería Civil
Fecha de registro: 2-mar-2020
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons