Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Porras, P., (2017). Design and simulation of a 3D porous copper solardriven evaporator [Tianjin University]. https://renati.sunedu.gob.pe/handle/sunedu/3037843
Porras, P., Design and simulation of a 3D porous copper solardriven evaporator []. CN: Tianjin University; 2017. https://renati.sunedu.gob.pe/handle/sunedu/3037843
@misc{renati/2870,
title = "Design and simulation of a 3D porous copper solardriven evaporator",
author = "Porras Jorge, Pierre Alexander",
publisher = "Tianjin University",
year = "2017"
}
Title: Design and simulation of a 3D porous copper solardriven evaporator
Other Titles: 3D 多孔铜太阳能驱动蒸发器设计与仿真; Diseño y simulación de un evaporador solar de cobre poroso 3D
Authors(s): Porras Jorge, Pierre Alexander
Advisor(s): Liu, Xianhua
Keywords: Evaporación; Evaporadores; Evaporadores solares; Simulación por computadoras; Energía solar; Cobre poroso
OCDE field: https://purl.org/pe-repo/ocde/ford#2.07.01
Issue Date: 2017
Institution: Tianjin University
Abstract: La investigación demuestra que el evaporador interfacial poroso impulsado por energía solar genera vapor con bajo flujo solar de manera eficiente. La eficiencia de conversión de energía solar a vapor del diseño de evaporación poroso impulsado por energía solar 3D es del 48,1%.
El control de la cantidad de agua suministrada a la superficie porosa del evaporador es crucial para aumentar la temperatura del vapor y anticipar el sobrecalentamiento del evaporador, lo que minimiza los problemas de calor relacionados a la evaporación. El suministro de agua por bombeo capilar permite innovar la humectabilidad superficial del evaporador poroso; por lo tanto, adaptar el suministro de agua hacia la región de evaporación. El diseño compacto de la salida de vapor en la pared lateral fomenta la recolección de vapor y la utilización resultante del vapor generado.
Con un rendimiento mejorado, la evaporación interfacial porosa puede ser utilizado para la recolección de energía solar térmica y el transporte rápido, la generación de electricidad, la recolección de energía mecánica y la producción de combustible solar-químico. El generador de vapor portátil de alta eficiencia podría revolucionar la aplicación universal de tecnologías termo-solares de flujo solar bajo, ya que tiene una accesibilidad completa de materiales de bajo costo para fabricar la estructura de evaporación y permite un sinfín de aplicaciones.
Solar steam generation has attracted huge research awareness about consideration owing to its high efficiency in solar energy and transformative mechanical potential. Recently, solar-driven interfacial evaporation by localization of solar-thermal energy conversion in the air/liquid interface has been suggested as a positive alternative to conventional bulk heating-based evaporation, conceivably decreasing thermal losses and progressing energy transformation effectiveness. This graduation project proposes the development of a unique 3D copper porous solar-driven evaporation design which is composed of a transparent cover (transparent bubble wrap), a spectrally selective solar absorber, an evaporation structure (hybrid copper porous foam), a wicking material (air-laid paper) and a thermal insulation (polystyrene and EPE foam). Moreover, the design is simulated in COMSOL Multiphysics software and high solar-to-steam efficiency of 48.1%. The high steam generation efficiency is reached by localizing solar-thermal heating at the evaporation surface and controlling the water supply onto the porous evaporator by adjusting its surface wettability, which anticipates overheating of the evaporator and in this way minimizes conductive, convective, and warm radiative losses from the evaporator. The unique design of the steam outlet placed at the sidewall of the evaporator encourages the collection of produced steam; in addition, it maintains a strategic distance from potential blockage of solar radiation by the condensing steam. The high-efficiency solar-driven evaporator can be utilized in many technologically critical energy-related applications such as solar-thermal energy harvesting, electricity generation, mechanical energy harvesting, and solar- chemical fuel production.
Solar steam generation has attracted huge research awareness about consideration owing to its high efficiency in solar energy and transformative mechanical potential. Recently, solar-driven interfacial evaporation by localization of solar-thermal energy conversion in the air/liquid interface has been suggested as a positive alternative to conventional bulk heating-based evaporation, conceivably decreasing thermal losses and progressing energy transformation effectiveness. This graduation project proposes the development of a unique 3D copper porous solar-driven evaporation design which is composed of a transparent cover (transparent bubble wrap), a spectrally selective solar absorber, an evaporation structure (hybrid copper porous foam), a wicking material (air-laid paper) and a thermal insulation (polystyrene and EPE foam). Moreover, the design is simulated in COMSOL Multiphysics software and high solar-to-steam efficiency of 48.1%. The high steam generation efficiency is reached by localizing solar-thermal heating at the evaporation surface and controlling the water supply onto the porous evaporator by adjusting its surface wettability, which anticipates overheating of the evaporator and in this way minimizes conductive, convective, and warm radiative losses from the evaporator. The unique design of the steam outlet placed at the sidewall of the evaporator encourages the collection of produced steam; in addition, it maintains a strategic distance from potential blockage of solar radiation by the condensing steam. The high-efficiency solar-driven evaporator can be utilized in many technologically critical energy-related applications such as solar-thermal energy harvesting, electricity generation, mechanical energy harvesting, and solar- chemical fuel production.
Link to repository: https://renati.sunedu.gob.pe/handle/sunedu/3037843
Note: Acceso embargado debido a que el autor prepara una publicación científica a partir del presente trabajo, por lo cual la tesis no puede ser pública hasta que se complete el proceso de publicación.
Discipline: Ingeniería en la especialidad de Ingeniería Ambiental
Grade or title grantor: Tianjin University
Grade or title: Licenciado en Ingeniería en la especialidad de Ingeniería Ambiental
Juror: Qingling, Liu; Na, Ji; Chunfeng, Song
Register date: 17-Nov-2021
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PorrasJorgePA.pdf | Tesis (embargada) | 7.09 MB | Adobe PDF | View/Open |
Autorizacion.pdf Restricted Access | Autorización del registro | 188.36 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.