Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Gallegos, R., (2021). Bioadsorción de plomo (II) en matriz acuosa usando residuos de cabello, a escala laboratorio [Universidad Nacional Agraria La Molina]. https://hdl.handle.net/20.500.12996/4964
Gallegos, R., Bioadsorción de plomo (II) en matriz acuosa usando residuos de cabello, a escala laboratorio []. PE: Universidad Nacional Agraria La Molina; 2021. https://hdl.handle.net/20.500.12996/4964
@misc{renati/248943,
title = "Bioadsorción de plomo (II) en matriz acuosa usando residuos de cabello, a escala laboratorio",
author = "Gallegos Huamán, Rosa Luz",
publisher = "Universidad Nacional Agraria La Molina",
year = "2021"
}
Título: Bioadsorción de plomo (II) en matriz acuosa usando residuos de cabello, a escala laboratorio
Autor(es): Gallegos Huamán, Rosa Luz
Asesor(es): Villegas Silva, Elvito Fabián
Palabras clave: Pelo; Aguas residuales; Desechos industriales; Materia orgánica; Biosorción (Biodecontaminación); Adsorción; Manejo de desechos; Plomo; Polución del agua; Remoción de solventes; Evaluación; Perú; Remoción de plomo
Campo OCDE: https://purl.org/pe-repo/ocde/ford#2.07.01
Fecha de publicación: 2021
Institución: Universidad Nacional Agraria La Molina
Resumen: La bioadsorción surge como una alternativa de tratamiento de aguas contaminadas usando un material con capacidad adsorbente a través del proceso de adsorción. Este trabajo de investigación tiene como objetivo determinar la capacidad de bioadsorción de Plomo (II) presente en matriz acuosa usando residuos de cabello como bioadsorbente proveniente de peluquerías, a escala laboratorio. Los residuos de cabello (RC) fueron lavados, secados, cortados, tamizados a 0.85 mm y sometidos a un tratamiento de activación por el método de reducción-oxidación con Na2S (0.1 M) y H2O2 (al 30%). Estos RC fueron analizados por el equipo de ICP-MS para hallar la cantidad de plomo inicial en la muestra, por el Microscopio de barrido electrónico para observar su morfología, por el Espectroscopio infrarrojo por transformada de Fourier (FTIR) para hallar los grupos funcionales químicos involucrados y por el Espectrofotómetro de absorción atómica para hallar la cantidad de plomo (Pb2+) adsorbido por los RC para lo cual se realizó el experimento exponiendo 0.2g de RC en soluciones de Pb2+ a diferentes concentraciones (5, 10, 25, 50, 100 y 250 ppm) y a diferentes tiempos de exposición (10, 30, 60, 90, 120 y 180 min), con tres repeticiones cada uno. Previamente se definió el pH y tamaño óptimo de RC haciendo pruebas con diversos pH (3, 4, 5, 6 y 7) y con dos tamaños diferentes (0.85mm). Los principales resultados fueron: la capacidad de adsorción de los RC con tratamiento registró 18.215 mg/g, el pH óptimo fue 4.3, el tiempo de contacto óptimo fue 180min, el modelo cinético que mejor se ajustó fue el pseudo segundo orden, y el equilibrio de adsorción mejor descrito fue por la isoterma de Langmuir. En conclusión, el proceso de bioadsorción se da con la formación de una monocapa sobre una superficie relativamente homogénea, un numero finito de sitios y con interacción despreciable de las moléculas laterales.
Bioadsorption arises as an alternative for treating contaminated water using a material with adsorbent capacity through the adsorption process. This research work aims to determine the bioadsorption capacity of Lead (II) present in an aqueous matrix using hair residues as bio adsorbent from hairdressers, on a laboratory scale. The hair residues (HR) were washed, dried, cut, sieved at 0.85 mm and subjected to an activation treatment by the reductionoxidation method withNa2S (0.1 M) and H2O2 (30%). These HR were analysed by the ICPMS equipment to find the initial amount of lead in the sample, by the Scanning Electron Microscope to observe its morphology, by the Fourier Transform Infrared Spectroscope (FTIR) to find the chemical functional groups involved and by the Atomic Absorption Spectrophotometer to find the amount of lead (Pb2+ ) adsorbed by the HR, for which the experiment was carried out exposing 0.2g of HR in solutions of Pb2+ at different concentrations (5, 10, 25 , 50, 100 and250 ppm) and at different exposure times (10, 30, 60, 90, 120 and 180 min), with three repetitions each. The optimal pH and size of HR were previously defined by testing with various pHs (3, 4, 5, 6 and 7) and with two different sizes (0.85mm). The main results were: the adsorption capacity of the HR with treatment registered 18,215 mg/g, the optimal pH was 4.3, the optimal contact time was 180 min, the kinetic model that best adjusted was the pseudo second order, and the equilibrium that best described adsorption was by the Langmuir isotherm. In conclusion, the bioadsorption process occurs with the formation of a monolayer on a relatively homogeneous surface, a finite number of sites and with negligible interaction of the lateral molecules.
Bioadsorption arises as an alternative for treating contaminated water using a material with adsorbent capacity through the adsorption process. This research work aims to determine the bioadsorption capacity of Lead (II) present in an aqueous matrix using hair residues as bio adsorbent from hairdressers, on a laboratory scale. The hair residues (HR) were washed, dried, cut, sieved at 0.85 mm and subjected to an activation treatment by the reductionoxidation method withNa2S (0.1 M) and H2O2 (30%). These HR were analysed by the ICPMS equipment to find the initial amount of lead in the sample, by the Scanning Electron Microscope to observe its morphology, by the Fourier Transform Infrared Spectroscope (FTIR) to find the chemical functional groups involved and by the Atomic Absorption Spectrophotometer to find the amount of lead (Pb2+ ) adsorbed by the HR, for which the experiment was carried out exposing 0.2g of HR in solutions of Pb2+ at different concentrations (5, 10, 25 , 50, 100 and250 ppm) and at different exposure times (10, 30, 60, 90, 120 and 180 min), with three repetitions each. The optimal pH and size of HR were previously defined by testing with various pHs (3, 4, 5, 6 and 7) and with two different sizes (0.85mm). The main results were: the adsorption capacity of the HR with treatment registered 18,215 mg/g, the optimal pH was 4.3, the optimal contact time was 180 min, the kinetic model that best adjusted was the pseudo second order, and the equilibrium that best described adsorption was by the Langmuir isotherm. In conclusion, the bioadsorption process occurs with the formation of a monolayer on a relatively homogeneous surface, a finite number of sites and with negligible interaction of the lateral molecules.
Enlace al repositorio: https://hdl.handle.net/20.500.12996/4964
Nota: Universidad Nacional Agraria La Molina. Facultad de Ciencias. Departamento Académico de Ingeniería Ambiental, Física y Meteorología
Disciplina académico-profesional: Ingeniería Ambiental, Física y Meteorología
Institución que otorga el grado o título: Universidad Nacional Agraria La Molina. Facultad de Ciencias
Grado o título: Ingeniero Ambiental
Jurado: Miyashiro Kiyan, Víctor Raúl; Ríos Ríos, Elva María; Quipuzco Ushñaua, Lawrence Enrique
Fecha de registro: 15-oct-2021
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons