Bibliographic citations
Cedeño, G., (2015). Biorreguladores para la propagación intensiva del banano Williams (Musa AAA Simmonds) en cámara térmica [Tesis, Universidad Nacional Agraria La Molina]. https://hdl.handle.net/20.500.12996/931
Cedeño, G., Biorreguladores para la propagación intensiva del banano Williams (Musa AAA Simmonds) en cámara térmica [Tesis]. : Universidad Nacional Agraria La Molina; 2015. https://hdl.handle.net/20.500.12996/931
@mastersthesis{renati/248052,
title = "Biorreguladores para la propagación intensiva del banano Williams (Musa AAA Simmonds) en cámara térmica",
author = "Cedeño García, Galo Alexander",
publisher = "Universidad Nacional Agraria La Molina",
year = "2015"
}
This research was carried out at the experimental farm “La Teodomira“ that belongs to the Technical University of Manabí, Ecuador, from November 2013 to April 2014. Its main objective was to develop an intensive propagation system of banana plants under thermal chamber conditions, based on the use of plant bioregulators. For this purpose, two experiments were carried out. In the first, the effect of four levels of benzylaminopurine (BAP) (0, 20, 40 and 60 mg L-1) and four levels of the plant growth stimulant Basfoliar (0, 20, 40 and 80 ml/corm) on the rate of multiplication of banana cv. “Williams“ under conditions of thermal chamber, were evaluated. A Randomized Complete Block Design with treatments arranged in a 4 x 4 factorial experiment with three replications was used. Highly significant differences were detected in the analysis of variance only for the benzylaminopurine factor. The highest multiplication rates were achieved with the levels of 40 mg L-1 BAP and 80 mg L-1 BAP (47.27, and 45.32 plantlets/corm, respectively) which were statistically different to the levels of 0 and 20 mg L-1 BAP (25.96, and 35.20 plantlets/corm, respectively) according to the Tukey test (p≤0.05). No significant differences were found neither for the biostimulant Basfoliar, nor for the interaction BAP x Basfoliar. Callus formation was evident from first generation sprouts (R1), which produced the greater number of plantlets. Adventitious plantlets was also obtained but in smaller amounts. With the concentration of 80 mg L-1 of BAP, the presence of callus and abnormal plantlets was observed. Symptoms observed in these plantlets were rossette growth, weak and watery stems and deformed and necrotic leaves, which are similar to the symptoms of hyperhydricity shown by in vitro produced plantlets. Furthermore in some plantlets streak symptoms was also observed. In the second experiment, the potential for rooting and quality of three phenological stages and two provenances of banana plantlets cv. “Williams” obtained from callus and adventitious buds was evaluated. Phenological stages were: plantlets with rudimentary leaf flag (EF1), plantlets with flag leaf and a normal leaf (EF2) and plantlets with flag leaf and more than a normal leaf (EF3). Provenance were: callus and adventitious buds. A Completely Randomized Design with treatments arranged in a 2 x 3 factorial experiment with six replications was used. Rooting was performed in water and rooting percentage was evaluated at 5, 10 and 15 days. Highly significant differences were found for both provenance (callus and adventitious buds) and phenological stages (EF1, EF2 and EF3) factors. After 15 days of rooting in water, plantlets from callus reached 86.4% rooting, compared to 79.5% for those from adventitious buds. Also, after 15 days of rooting, the highest percentage of rooting (94.7%) was obtained with EF3 as compared to EF1 and EF2 plantlets (83.3% and 70.8%, respectively). Finally, quality of rooted plantlets produced in thermal chamber was assessed, using a Completely Randomized Design with treatments arranged in a 2 x 3 factorial experiment. Treatments included plantlet provenances (callus and adventitious buds) and phenological stages (EF1, EF2 and EF3). Variables evaluated were Dickson’s quality index and plantlets dry weight at 60 days after transplanting to bags. Significant differences were found for plantlet provenances, phenological stage and its interaction. The greatest plantlet dry weight and Dickson’s quality index, was found in plantlets from callus tissue at EF3 phenological stage (45.10g and 9.68, respectively), which were considered as the best plantlets in terms of quality and vigor.
This item is licensed under a Creative Commons License