Citas bibligráficas
Miranda, A., (2021). Predicción del riesgo de incumplimiento en el pago de los créditos del portafolio de una entidad financiera utilizando regresión logística [Universidad Nacional Agraria La Molina]. https://hdl.handle.net/20.500.12996/5071
Miranda, A., Predicción del riesgo de incumplimiento en el pago de los créditos del portafolio de una entidad financiera utilizando regresión logística []. PE: Universidad Nacional Agraria La Molina; 2021. https://hdl.handle.net/20.500.12996/5071
@misc{renati/246324,
title = "Predicción del riesgo de incumplimiento en el pago de los créditos del portafolio de una entidad financiera utilizando regresión logística",
author = "Miranda Pilco, Adriana",
publisher = "Universidad Nacional Agraria La Molina",
year = "2021"
}
The success of a financial institution lies in the proper management of the risks that it is exposed, being one of them a Credit Risk which is defined as the possibility of loss as a result of the borrower's failure to meet his obligations. The analytical tools used in the management of this type of risk have been evolving over time and include statistics and data mining as part of these tools. In this Professional Sufficiency Work report, it is described how the application of the Credit Scoring methodology together with the CRISP DM data mining methodology for the construction of a behavioral risk model in a financial institution, allowed to obtain a Gini coefficient of 64% and to better segment the client portfolio of that institution by increasing the participation of the best clients by 20%.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons