Citas bibligráficas
Maza, S., (2021). Metodologías de valoración EX - ANTE del impacto de la biotecnología en el sector agrario peruano [Universidad Nacional Agraria La Molina]. https://hdl.handle.net/20.500.12996/4640
Maza, S., Metodologías de valoración EX - ANTE del impacto de la biotecnología en el sector agrario peruano []. PE: Universidad Nacional Agraria La Molina; 2021. https://hdl.handle.net/20.500.12996/4640
@mastersthesis{renati/245189,
title = "Metodologías de valoración EX - ANTE del impacto de la biotecnología en el sector agrario peruano",
author = "Maza y Silupú, Santos de los Reyes",
publisher = "Universidad Nacional Agraria La Molina",
year = "2021"
}
Given the importance of technological innovations in Peruvian agriculture, the objective is to evaluate the analytical efficiency of the various methodologies applied in ex ante research and to compare the results of deterministic methodologies with probabilistic methodologies in the case of the release of cisgenic potato seeds in the Peruvian agricultural sector. The partial budget method of Horton (1982) and the surplus method of Alston, Norton and Pardey (1995) are applied in deterministic and probabilistic environments. It was found that when using the deterministic methodology unique values of the indicators are observed, while with the probabilistic a range of values is obtained that follow a probability distribution, reflecting the variability of the conditions and uncertainty present in the production. In the study, there is a 99.3 percent probability that favorable cases will appear for the beneficiary agents of the technology, as well as a 0.7 percent probability that a harmful scenario will appear, which means that not all scenarios in cultivation will be beneficial. In conclusion, the greater efficiency of the probabilistic methodology is demonstrated, by providing results that reflect more broadly and with greater reliability, the possible situations generated by the release of a new technology.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons