Citas bibligráficas
Tenaud, B., (2023). Pronóstico de visibilidad horizontal y temperaturas para el Aeropuerto de Trujillo mediante el uso de redes neuronales artificiales de retropropagación [Universidad Nacional Agraria La Molina]. https://hdl.handle.net/20.500.12996/5602
Tenaud, B., Pronóstico de visibilidad horizontal y temperaturas para el Aeropuerto de Trujillo mediante el uso de redes neuronales artificiales de retropropagación []. PE: Universidad Nacional Agraria La Molina; 2023. https://hdl.handle.net/20.500.12996/5602
@misc{renati/245071,
title = "Pronóstico de visibilidad horizontal y temperaturas para el Aeropuerto de Trujillo mediante el uso de redes neuronales artificiales de retropropagación",
author = "Tenaud Jo, Biby Ann",
publisher = "Universidad Nacional Agraria La Molina",
year = "2023"
}
It is almost impossible to talk about any aspect of aviation without reference to the meteorological environment in which an aircraft operates. Failure to forecast adverse weather events for aviation in a timely manner can lead to flight delays or cancellations, generating large economic costs for airlines and passengers. The new computational technologies that are being developed, allow an update of weather forecasting techniques, with artificial neural networks as a new paradigm of interest. In the present investigation, the forecast of the meteorological variables of horizontal visibility and maximum and minimum temperatures at the Trujillo airport was carried out using Backpropagation Neural Network (BNN), analyzing and identifying the climatological conditions and meteorological systems of influence that govern the place. Having as input variables for the BNN, daily data of the maximum and minimum temperature from the years 2008 to 2017 and hourly data of the horizontal visibility from the years 2013 to 2017 of the Trujillo airport, in addition to the explanatory variables such as global indices and other local weather variables. The BNNs used for maximum and minimum air temperature analysis consist of eight neurons in the input and hidden layer and an output layer of one neuron; and for horizontal visibility it consists of ten neurons in the input and hidden layer, and an output layer of one neuron. The results showed that, for the maximum and minimum temperature variables, the predicted and observed values are very close to each other with a similar trend; and for the horizontal visibility variable, significant differences are perceived, however, they do show similar trend patterns.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons