Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Casas, B., Cama, D. (2024). Ergonomic improvement to reduce the risk of musculoskeletal disorders (MSDS) in a furniture production workshop [Universidad de Lima]. https://hdl.handle.net/20.500.12724/20745
Casas, B., Cama, D. Ergonomic improvement to reduce the risk of musculoskeletal disorders (MSDS) in a furniture production workshop []. PE: Universidad de Lima; 2024. https://hdl.handle.net/20.500.12724/20745
@misc{renati/234572,
title = "Ergonomic improvement to reduce the risk of musculoskeletal disorders (MSDS) in a furniture production workshop",
author = "Cama Machado, Diego",
publisher = "Universidad de Lima",
year = "2024"
}
Título: Ergonomic improvement to reduce the risk of musculoskeletal disorders (MSDS) in a furniture production workshop
Autor(es): Casas Rodrigo, Briayan Alexander; Cama Machado, Diego
Asesor(es): Taquía Gutiérrez, José Antonio
Palabras clave: Pendiente
Campo OCDE: https://purl.org/pe-repo/ocde/ford#2.11.04
Fecha de publicación: 2024
Institución: Universidad de Lima
Resumen: El presente trabajo de investigación tiene la finalidad de simular una mejora ergonómica en el taller de producción de muebles para las áreas que evidencien mayor riesgo de trastornos musculoesqueléticos. De esta manera se emplearon los métodos de ergonomía e instrumentos como el cuestionario Nórdico para la medición de las zonas corporales, debido al aumento de casos de TME relacionados con el trabajo físico en el sector de la tapicería. Estos trastornos se desarrollan a causa de la carencia de un diseño ergonómico adecuado y a la falta de una identificación oportuna que priorice el bienestar de los trabajadores. Así, se aplicaron las metodologías de NIOSH, RULA y OWAS con lo que permitió evaluar el nivel de riesgo e índice de levantamiento antes y después. Estos valores se contrastaron con los softwares Ergosoft Pro y 3DSSPP para validar la propuesta del diseño. De tal manera que se logró reducir el nivel de riesgo de un valor de 4 a 1 y el índice de levantamiento de 3.8 a 0.99. Además, se empleó la inteligencia artificial a través de la aplicación de Open Pose para conseguir la estimación de los ángulos de los brazos en tiempo real.
The present research work has the purpose of simulating an ergonomic improvement in the furniture production workshop for the areas that show a higher risk of musculoskeletal disorders. In this way, ergonomics methods and instruments such as the Nordic questionnaire were used to measure the body areas, due to the increase in cases of MSDs related to physical work in the upholstery sector. These disorders develop due to the lack of adequate ergonomic design and the lack of timely identification that prioritizes the well-being of workers. Thus, NIOSH, RULA and OWAS methodologies were applied to evaluate the level of risk and lifting index before and after. These values were contrasted with Ergosoft Pro and 3DSSPP software to validate the design proposal. In such a way that the risk level was reduced from a value of 4 to 1 and the uplift index from 3.8 to 0.99. In addition, artificial intelligence was employed through the Open Pose application to achieve the estimation of the arm angles in real time.
The present research work has the purpose of simulating an ergonomic improvement in the furniture production workshop for the areas that show a higher risk of musculoskeletal disorders. In this way, ergonomics methods and instruments such as the Nordic questionnaire were used to measure the body areas, due to the increase in cases of MSDs related to physical work in the upholstery sector. These disorders develop due to the lack of adequate ergonomic design and the lack of timely identification that prioritizes the well-being of workers. Thus, NIOSH, RULA and OWAS methodologies were applied to evaluate the level of risk and lifting index before and after. These values were contrasted with Ergosoft Pro and 3DSSPP software to validate the design proposal. In such a way that the risk level was reduced from a value of 4 to 1 and the uplift index from 3.8 to 0.99. In addition, artificial intelligence was employed through the Open Pose application to achieve the estimation of the arm angles in real time.
Enlace al repositorio: https://hdl.handle.net/20.500.12724/20745
Disciplina académico-profesional: Ingeniería Industrial
Institución que otorga el grado o título: Universidad de Lima. Facultad de Ingeniería
Grado o título: Ingeniero Industrial
Jurado: Santos Figueroa, Luis Enrique; Lizárraga Portugal, Carlos Augusto; Taquía Gutiérrez, José Antonio
Fecha de registro: 21-jun-2024
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons