Buscar en Google Scholar
Título: Diseño de un proceso para la producción de bioetanol a partir de cáscara de papa
Otros títulos: Process design for the production of bioethanol from potato peels
Asesor(es): Araujo Pantoja, Patricia
Campo OCDE: https://purl.org/pe-repo/ocde/ford#2.04.01
Fecha de publicación: 2021
Institución: Universidad de Ingeniería y Tecnología
Resumen: El diseño del proceso para la producción de bioetanol fue realizado con el propósito de producir este biocombustible, el cual en el Perú es utilizado como un aditivo de la gasolina, con el fin de mejorar la calidad del combustible debido a que aumenta los niveles de oxígeno y reduce las emisiones de gases de efecto invernadero. El proceso diseñado tiene la capacidad de producir 5086.36 m3 /año (32 MBLS) de bioetanol con alta pureza (99.7% v/v) lo que podría abastecer el 2.9% del volumen importado en el Perú. Además, se consideró emplear la cáscara de papa como materia prima debido a su alto contenido de azúcares fermentables. A partir de las referencias bibliográficas se decidió trabajar con hidrólisis enzimática debido a su alto rendimiento de azúcares, y fermentación utilizando la levadura Saccharomyces cerevisiae ya que es un microorganismo capaz de fermentar hexosas de manera eficiente logrando producir etanol. Para la destilación extractiva se utilizó el solvente tetraetilenglicol porque permite una buena separación en la destilación, no es tóxico y no contamina el medio ambiente, además, se contó con una etapa de recuperación de solvente. En este trabajo se realizó el diseño del secador, reactores, columnas de destilación, bombas, intercambiadores de calor, entre otros. Para el diseño de los reactores se analizó la cinética que ocurre en cada uno de ellos y se determinaron sus dimensiones, obteniéndose una capacidad de 34 m3 para la etapa de hidrólisis y un reactor de una capacidad de 187 m3 para la etapa de fermentación. También, se realizó el diseño de tres columnas de destilación determinando el número de etapas reales, la altura y el diámetro. Así mismo, se realizó el diseño del equipo de secado, nueve intercambiadores de calor y una caldera cuya fuente de energía es el gas natural con un consumo de 2600.42 Sm3 por día. Con el objetivo de determinar las condiciones de operación de las tres columnas de destilación se utilizó el simulador ProMax 4.0. A través de la simulación, se determinó la potencia térmica en el rehervidor y condensador, el número de etapas teóricas necesarios para obtener la concentración deseada en la corriente de destilado y fondo determinando que se necesitan 17, 26 y 11 etapas teóricas para la primera, segunda y tercera columna de destilación, respectivamente. Asimismo, se analizó la concentración del etanol, agua y tetraetilenglicol en el flujo del destilado y fondo a medida que la posición de la etapa de alimentación variaba, determinándose la posición óptima para cada una de las columnas de destilación. Finalmente, se realizó la evaluación económica a un horizonte de 20 años considerando el precio de venta en Estados Unidos ($ 0.7/L), determinando a través del flujo de caja que el proyecto es rentable a partir del quinto año, con una tasa interna de retorno de 25% y un valor actual neto de $ 4,880,405.94. Con el análisis de sensibilidad, se halló que el OPEX es más sensible en comparación al precio de venta del bioetanol y el CAPEX ya que se demostró que cuando el OPEX aumenta en un 30% se obtiene una TIR de 12%.

The design of the process for the production of bioethanol was carried out with the purpose of producing this biofuel, which in Peru is used as a gasoline additive, in order to improve the quality of the fuel because it increases oxygen levels and reduces greenhouse gas emissions. The designed process has the capacity to produce 5086.36 m3 /year (32 MBLS) of bioethanol with high purity (99.7% v/v), which could supply 2.9% of the imported volume in Peru. In addition, it was considered to use potato peel as raw material due to its high content of fermentable sugars. Based on the bibliographic references, it was decided to work with enzymatic hydrolysis due to its high yield of sugars, and fermentation using the yeast Saccharomyces cerevisiae since it is a microorganism capable of efficiently fermenting hexoses, producing ethanol. For the extractive distillation, the solvent tetraethylene glycol was used because it allows a good separation in the distillation, it isn’t toxic and doesn’t pollute the environment, in addition, it had a solvent recovery stage. In this work, the design of the dryer, reactors, distillation columns, pumps, heat exchangers, among others, was carried out. For the design of the reactors, the kinetics that occur in each of them were analyzed and their dimensions were determined, obtaining a capacity of 34 m3 for the hydrolysis step and a reactor with a capacity of 187 m3 for the fermentation step. Also, the design of three distillation columns was carried out, determining the number of real stages, the height and the diameter. Likewise, the design of the equipment was carried out, such as the dryer, nine heat exchangers and a boiler whose energy source is natural gas with a consumption of 2600.42 Sm3 per day. In order to determine the operating conditions of the three distillation columns, the ProMax 4.0 simulator was used. Through simulation, the thermal power in the reboiler and condenser was determined, the number of theoretical stages necessary to obtain the desired concentration in the distillate and bottom stream, determining that 17, 26 and 11 stages are needed for the first, second and third distillation column, respectively. Likewise, the concentration of ethanol, water and tetraethylene glycol in the distillate flow and bottom was analyzed as the position of the feed stage varied, determining the optimal position for each of the distillation columns. Finally, the economic evaluation was carried out at a horizon of 20 years considering the price with which it is sold in the United States ($ 0.7/L), determining through the cash flow that the project is profitable from the fifth year, with an internal rate of return (IRR) of 25% and a net present value (NPV) of $ 4,880,405.94. With the sensitivity analysis, it was found that OPEX is more sensitive compared to the sale price of bioethanol and CAPEX since it was shown that when OPEX increases by 30%, an IRR of 12% is obtained.
Disciplina académico-profesional: Ingeniería Química
Institución que otorga el grado o título: Universidad de Ingeniería y Tecnología. Ingeniería Química
Grado o título: Ingeniera Químico
Jurado: Tarazona Vásquez, Francisco; Carranza Oropeza, María Verónica; Segura Rodriguez, William
Fecha de registro: 17-dic-2021



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons