Buscar en Google Scholar
Título: Deep Learning para la clasificación múltiple de residuos sólidos domésticos
Asesor(es): Necochea Chamorro, Jorge Isaac
Campo OCDE: https://purl.org/pe-repo/ocde/ford#2.02.04
Fecha de publicación: 2023
Institución: Universidad César Vallejo
Resumen: La urbanización mundial está acelerando la producción de residuos sólidos, poniendo en peligro la salud humana como el medio ambiente. Teniendo un rápido desarrollo de la tecnología de aprendizaje profundo, se propone una variedad de modelos de red neuronal, sin embargo estos modelos existentes siguen presentando problemas en la exactitud, precisión, recall y F1 Score. Por ello, el objetivo de este proyecto es lograr un mejora de clasificación en comparación con el modelo CNN, de esta manera se propone un método de clasificación basado en una red neuronal que tiene como base CNN. Este logra obtener mejores resultados al agregar capas, un algoritmo regularizador y el uso de optuna. Por último, la presente investigación demuestra que el modelo propuesto logra mejores resultados que el modelo CNN, asimismo en comparación con algunos trabajos recientes, logra converger en menor épocas que otros métodos propuestos en el estado del arte, asimismo logra mejores resultados de clasificación en ciertas clases de residuos sólidos domésticos. El método propuesto logró una exactitud del 82% superando los resultados obtenidos en otras investigaciones que han utilizado métodos como Efficient-B2, RCNN y SVM.
Disciplina académico-profesional: Ingeniería de Sistemas
Institución que otorga el grado o título: Universidad César Vallejo. Facultad de Ingeniería y Arquitectura
Grado o título: Ingeniero de Sistemas
Jurado: Hilario Falcon, Francisco Manuel; Saboya Rios, Nemias; Necochea Chamorro, Jorge Isaac
Fecha de registro: 22-ene-2024



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons