Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Cuzcano, X., (2020). A comparison of classification models to detect cyberbullying in the peruvian spanish language on Twitter [Universidad de Lima]. https://hdl.handle.net/20.500.12724/12718
Cuzcano, X., A comparison of classification models to detect cyberbullying in the peruvian spanish language on Twitter []. PE: Universidad de Lima; 2020. https://hdl.handle.net/20.500.12724/12718
@misc{renati/1438548,
title = "A comparison of classification models to detect cyberbullying in the peruvian spanish language on Twitter",
author = "Cuzcano Chavez, Ximena Marianne",
publisher = "Universidad de Lima",
year = "2020"
}
Título: A comparison of classification models to detect cyberbullying in the peruvian spanish language on Twitter
Autor(es): Cuzcano Chavez, Ximena Marianne
Asesor(es): Ayma Quirita, Víctor Hugo
Palabras clave: Ciberacoso; Blogs; Acoso moral; Cyberbullying; Bullying
Campo OCDE: https://purl.org/pe-repo/ocde/ford#2.02.04
Fecha de publicación: 2020
Institución: Universidad de Lima
Resumen: Cyberbullying is a social problem in which bullies’
actions are more harmful than in traditional forms of bullying as
they have the power to repeatedly humiliate the victim in front of
an entire community through social media. Nowadays, multiple
works aim at detecting acts of cyberbullying via the analysis of
texts in social media publications written in one or more
languages; however, few investigations target the cyberbullying
detection in the Spanish language. In this work, we aim to
compare four traditional supervised machine learning methods
performances in detecting cyberbullying via the identification of
four cyberbullying-related categories on Twitter posts written in
the Peruvian Spanish language. Specifically, we trained and
tested the Naive Bayes, Multinomial Logistic Regression, Support
Vector Machines, and Random Forest classifiers upon a
manually annotated dataset with the help of human participants.
The results indicate that the best performing classifier for the
cyberbullying detection task was the Support Vector Machine
classifier.
Enlace al repositorio: https://hdl.handle.net/20.500.12724/12718
Disciplina académico-profesional: Ingeniería de sistemas
Institución que otorga el grado o título: Universidad de Lima. Facultad de Ingeniería y Arquitectura
Grado o título: Ingeniero de sistemas
Jurado: Rodriguez-Rodriguez-Nadia-Katherine; Ramos-Ponce, Oscar-Efrai; Quintana-Cruz, Hernan-Alejandro
Fecha de registro: 16-mar-2021
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons