Buscar en Google Scholar
Título: Identificación y clasificación de la mosca de la fruta de las especies Anastrepha fraterculus y Ceratitis capitata en imágenes utilizando un modelo de visión computacional basado en transferencia de aprendizaje
Campo OCDE: http://purl.org/pe-repo/ocde/ford#1.02.02
Fecha de publicación: 2024
Institución: Universidad Nacional de San Antonio Abad del Cusco
Resumen: Este estudio presenta un modelo de visión computacional basado en transferencia de aprendizaje para la clasificación automatizada de las especies de moscas de la fruta Anastrepha fraterculus y Ceratitis capitata, cuya identificación manual, actualmente realizada por expertos del Servicio Nacional de Sanidad Agraria del Perú (SENASA), enfrenta limitaciones de tiempo y consistencia. La plaga de la familia Tephritidae genera graves daños en la producción frutícola de la provincia de La Convención, motivando la necesidad de soluciones que optimicen la gestión y clasificación de estas especies. SENASA ha implementado una red de trampas para capturar muestras, que luego son clasificadas en laboratorios especializados, aunque esta labor resulta compleja debido a la fatiga de los especialistas y a la variabilidad morfológica de las especies. Para abordar estos desafíos, este proyecto implementó un modelo de aprendizaje profundo, entrenado con imágenes capturadas con un teléfono celular a través del ocular de un estereomicroscopio en un entorno controlado. Las imágenes fueron segmentadas y preprocesadas para resaltar características morfológicas relevantes, empleando los modelos preentrenados VGG16, VGG19 e Inception-v3. Los resultados mostraron que Inception-v3 alcanzó el mayor F1-score (100.00%), superando a VGG16 (92.00%) y a VGG19 (87.00%). Su confiabilidad fue verificada utilizando imágenes de entornos no controlados, incluidas imágenes de internet, además de la técnica Grad-CAM, que confirmó su capacidad para capturar características clave de las especies. Estos hallazgos sugieren que Inception-v3 es un método efectivo y aplicable en sistemas de monitoreo automatizados, con potencial para mejorar la precisión y eficiencia en la clasificación de A. fraterculus
Disciplina académico-profesional: Ingeniería Informática y de Sistemas
Institución que otorga el grado o título: Universidad Nacional de San Antonio Abad del Cusco. Facultad de Ingeniería Eléctrica, Electrónica, Informática y Mecánica
Grado o título: Ingeniero Informático y de Sistemas
Jurado: Candia Oviedo, Dennis Ivan; Pacheco Vasquez, Esther Cristina; Zamalloa Paro, Willian; Villalba Villalba, Tany
Fecha de registro: 24-ene-2025



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons