Título: Machine learning en la mejora del proceso de selección del personal administrativo de la Corte Superior de Justicia de Lima, 2020
Asesor(es): Visurraga Agüero, Joel Martin
Campo OCDE: https://purl.org/pe-repo/ocde/ford#2.02.04
Fecha de publicación: 2021
Institución: Universidad César Vallejo
Resumen: En esta investigación se determinó que el Machine Learning mejora el proceso de
selección del personal administrativo de la Corte Superior de Justicia de Lima,
2020. El estudio se realizó a raíz de que los procesos de selección tradicionales
generan puestos cancelados o desiertos.
Se desarrolló una investigación con enfoque cuantitativo en una muestra de 300
observaciones, bajo el supuesto de que machine learning mejora el proceso de
selección del personal administrativo, se eligió un diseño cuasi experimental, donde
el proceso de selección se cuantificó con tres indicadores, índice de personal
postulante, índice de evaluación curricular, e índice de contratación, a través de un
pretest y un postest, las observaciones se obtuvieron mediante fichas que fueron
validadas mediante juicio de expertos y la confiabilidad se valoró mediante el test
alfa de Cronbach, cuyas valoraciones superaron el 70%.
Los resultados se determinaron mediante el test de Wilcoxon que permitió la
comparación del pretest y postest, cuyo contraste fue significativo en cada
indicador, y se determinó que los indicadores mejoran en 35% en el índice de
personal postulante, 17% en el índice de evaluación curricular, y 2% en el índice de
contratación.
Disciplina académico-profesional: Maestría en Ingeniería de Sistemas con Mención en Tecnologías de la Información
Institución que otorga el grado o título: Universidad César Vallejo. Escuela de Posgrado
Grado o título: Maestro en Ingeniería de Sistemas con mención en Tecnologías de la Información
Jurado: Flores Zafra, David; Ramirez Rios, Alejandro; Visurraga Aguero, Joel Martin
Fecha de registro: 31-may-2021