Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Carrasco, Z., (2023). Modelo de serie de tiempo para la exportación de maíz en el Perú, periodo enero 2016 - mayo 2023 [Universidad Nacional de Trujillo]. https://hdl.handle.net/20.500.14414/19508
Carrasco, Z., Modelo de serie de tiempo para la exportación de maíz en el Perú, periodo enero 2016 - mayo 2023 []. PE: Universidad Nacional de Trujillo; 2023. https://hdl.handle.net/20.500.14414/19508
@misc{renati/1048041,
title = "Modelo de serie de tiempo para la exportación de maíz en el Perú, periodo enero 2016 - mayo 2023",
author = "Carrasco Obando, Zoraida Haydee",
publisher = "Universidad Nacional de Trujillo",
year = "2023"
}
Título: Modelo de serie de tiempo para la exportación de maíz en el Perú, periodo enero 2016 - mayo 2023
Autor(es): Carrasco Obando, Zoraida Haydee
Asesor(es): Risco Dávila, Carlos Alfonso
Palabras clave: Modelo ARIMA, Box-Jenkins, Exportación
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.03
Fecha de publicación: 2023
Institución: Universidad Nacional de Trujillo
Resumen: El presente trabajo de investigación es de enfoque cuantitativo de tipo observacional y longitudinal, el cual tuvo por objetivo determinar el modelo de serie de tiempo adecuado para la exportación de maíz en el Perú, periodo enero 2016- mayo 2023.Para ello se utilizó la metodología de Box-Jenkins, la cual ayudo a describir, diagnosticar, estimar, validar y pronosticar los datos de series de tiempo. El procesamiento de estos datos se realizó a través del software estadístico EViews. En este estudio se concluyó que la serie presentó estacionariedad con una primera diferencia para eliminar cierto comportamiento irregular, a su vez se halló el mejor modelo pronostico a través de los criterios de Akaike, Schwarz, Error de pronóstico y el R2. siendo: @TREND ar(1) ar(12) ma(1) ma(2), para su pronóstico se tomaron 89 observaciones para su validación y 5 meses para ser pronosticados, los mismos que fueron evaluados mediante la raíz del error cuadrático medio que resultó ser 27.48 (menor al modelo candidato), y por ultimo su validación se halló mediante normalidad y el test de heterocedasticidad de ARCH, por lo que se puede decir que este modelo escogido no sobreestima ni mucho menos subestima las exportaciones mensuales de maíz en el Perú
ABSTRACT The present research work has a quantitative approach of an observational and longitudinal type, which aimed to determine the appropriate time series model for the export of corn in Peru, period January 2016-May 2023. For this, the methodology was used of Box-Jenkins, which helped describe, diagnose, estimate, validate and forecast time series data. The processing of these data was carried out using the EViews statistical software. In this study it was concluded that the series presented stationarity with a first difference to eliminate certain irregular behavior, in turn the best prognostic model was found through the Akaike, Schwarz criteria, Forecast error and R2. being: @TREND ar(1) ar(12) ma(1) ma(2), for its forecast, 89 observations were taken for validation and 5 months to be forecast, which were evaluated by the root of the mean square error which turned out to be 27.48 (lower than the candidate model), and finally its validation was found through normality and the ARCH heteroscedasticity test, so it can be said that this chosen model does not overestimate, much less underestimate, the monthly corn exports in Peru
ABSTRACT The present research work has a quantitative approach of an observational and longitudinal type, which aimed to determine the appropriate time series model for the export of corn in Peru, period January 2016-May 2023. For this, the methodology was used of Box-Jenkins, which helped describe, diagnose, estimate, validate and forecast time series data. The processing of these data was carried out using the EViews statistical software. In this study it was concluded that the series presented stationarity with a first difference to eliminate certain irregular behavior, in turn the best prognostic model was found through the Akaike, Schwarz criteria, Forecast error and R2. being: @TREND ar(1) ar(12) ma(1) ma(2), for its forecast, 89 observations were taken for validation and 5 months to be forecast, which were evaluated by the root of the mean square error which turned out to be 27.48 (lower than the candidate model), and finally its validation was found through normality and the ARCH heteroscedasticity test, so it can be said that this chosen model does not overestimate, much less underestimate, the monthly corn exports in Peru
Enlace al repositorio: https://hdl.handle.net/20.500.14414/19508
Disciplina académico-profesional: Estadística
Institución que otorga el grado o título: Universidad Nacional de Trujillo.Facultad de Ciencias Físicas y Matemáticas
Grado o título: Ingeniero Estadístico
Jurado: Risco Dávila, Carlos Alfonso; Reyna Segura, Roger Demetrio; Cuadra Moreno, Mariana Lucía
Fecha de registro: 11
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons