Citas bibligráficas
Camarena, F., Valencia, L. (2024). Uso de la data mining para la modelación del déficit de demanda hídrica de regadío para el cultivo de zanahorias en el departamento de Junín distrito de Jauja [Trabajo de Suficiencia Profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/683208
Camarena, F., Valencia, L. Uso de la data mining para la modelación del déficit de demanda hídrica de regadío para el cultivo de zanahorias en el departamento de Junín distrito de Jauja [Trabajo de Suficiencia Profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2024. http://hdl.handle.net/10757/683208
@misc{renati/1036154,
title = "Uso de la data mining para la modelación del déficit de demanda hídrica de regadío para el cultivo de zanahorias en el departamento de Junín distrito de Jauja",
author = "Valencia Vilca, Luigui Vimcent",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2024"
}
This study utilizes data mining techniques to model the water demand for carrot crops in Jauja, Junín, using neural networks. Based on climate and hydrological data collected from nearby stations, such as Jauja, Ricran, Ingenio, Huayao, and Santa Ana, key variables (precipitation, temperature, relative humidity, wind, among others) were analyzed, and methods such as reference evapotranspiration (ETo) were applied to estimate irrigation requirements. The developed model employs multi-layer neural networks, optimized with the Adam algorithm, allowing for the training and validation of accurate predictions regarding water deficit. The methodology included data preprocessing, the creation of a neural network model in Python, and validation through comparative graphs between actual values and modeled data, achieving an adequate fit for training the network. This study contributes to more efficient and sustainable agriculture in areas with water scarcity. The implementation of deficit modeling as proposed can improve irrigation management in rural areas, optimizing water use and helping farmers better plan their activities in response to climate variations.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons