Look-up in Google Scholar
Title: Modelo de visión artificial basado en Deep Learning, para detectar actividades delictivas con pistola dentro de Lima Metropolitana
Other Titles: Artificial vision model based on Deep Learning to detect criminal activities with a gun in Metropolitan Lima.
OCDE field: https://purl.org/pe-repo/ocde/ford#2.02.04; https://purl.org/pe-repo/ocde/ford#1.00.00
Issue Date: 20-May-2024
Institution: Universidad Peruana de Ciencias Aplicadas (UPC)
Abstract: La investigación ha demostrado la ineficacia de los operadores de videovigilancia para detectar delitos a través de las cámaras de seguridad, lo que supone un reto debido a sus limitaciones físicas. Por otro lado, se ha demostrado que la visión por ordenador, aunque prometedora, se enfrenta a dificultades en la detección de delitos en tiempo real debido a la gran cantidad de datos necesarios para construir modelos fiables. Este estudio presenta tres innovaciones clave: un conjunto de datos de armas extraído del juego Grand Theft Auto V, un modelo de visión por ordenador entrenado con estos datos y una aplicación de videovigilancia que emplea el modelo para la detección automática de delitos con armas. El principal reto consistía en recopilar imágenes que representaran diversos escenarios y ángulos para reforzar el modelo de visión por ordenador. Se utilizó el editor de vídeo del juego Grand Theft Auto V para obtener las imágenes necesarias. Estas imágenes se utilizaron para entrenar el modelo, que se implementó en una aplicación de escritorio. Los resultados fueron muy prometedores, ya que el modelo demostró una gran precisión en la detección de delitos con armas de fuego en tiempo real. La aplicación de videovigilancia basada en este modelo fue capaz de identificar y alertar automáticamente sobre situaciones delictivas en las cámaras de seguridad.

This research has shown the ineffectiveness of video surveillance operators in detecting crimes through security cameras, which is a challenge due to their physical limitations. On the other hand, it was shown that computer vision, although promising, faces difficulties in real-time crime detection due to the large amount of data needed to build reliable models. This study presents three key innovations: a gun dataset extracted from the Grand Theft Auto V game, a computer vision model trained on this data, and a video surveillance application that employs the model for automatic gun crime detection. The main challenge was to collect images representing various scenarios and angles to reinforce the computer vision model. The video editor of the Grand Theft Auto V game was used to obtain the necessary images. These images were used to train the model, which was implemented in a desktop application. The results were very promising, as the model demonstrated high accuracy in detecting gun crime in real time. The video surveillance application based on this model was able to automatically identify and alert about criminal situations on security cameras.
Discipline: Ciencias de la Computación
Grade or title grantor: Universidad Peruana de Ciencias Aplicadas (UPC). Facultad de Ingeniería
Grade or title: Licenciado en Ciencias de la Computación
Juror: Diaz Suarez, Jorge Eduardo; Zubieta Cardenas, Robert Ernesto; Rojas Sihuay, Diego
Register date: 12-Dec-2024



This item is licensed under a Creative Commons License Creative Commons