Look-up in Google Scholar
Full metadata record
Lagos Barzola, Manuel Avelino
Canchari Gutiérrez, Jaime
2023-01-24T17:13:46Z
2023-01-24T17:13:46Z
2021
TESIS SIS96_Can
http://repositorio.unsch.edu.pe/handle/UNSCH/4693
El objetivo de la presente investigación es mostrar como una red neuronal artificial (RNA) es capaz de determinar el nivel de peligro que una mujer maltratada tiene de ser asesinada por su pareja íntima. Más específicamente, se trata de implementar un modelo de red neuronal artificial de tipo backpropagation capaz de determinar el nivel de riesgo de muerte de las mujeres víctimas de violencia de parte de su pareja íntima, a partir de las respuestas dadas en la ficha de registro de casos centro de emergencia mujer y el cuestionario denominado: Ficha de valoración de riesgo en mujeres víctimas de violencia de pareja el cual es un instrumento de valoración de riesgo utilizado por agentes de la ley, profesionales de la salud y defensores de la violencia doméstica para determinar el riesgo que tiene una mujer de sufrir agresión de parte de su pareja íntima. Para el desarrollo de la investigación se utilizó la base de datos del registro de casos del Centro Emergencia Mujer, periodo enero a diciembre del año 2020, que se encuentra en el portal estadístico del Programa Nacional Para la Prevención y Erradicación de la Violencia Contra las Mujeres e Integrantes del Grupo Familiar (AURORA) del Ministerio de la Mujer y Poblaciones Vulnerables del Perú (MIMP). La muestra estuvo compuesta por 2200 registros seleccionados de forma aleatoria, los cuales fueron divididos en 3 grupos: Grupo de entreno y validación que representaron el 80% del total de la muestra y el grupo de test que representa el 20% del total de la muestra. El enfoque de la investigación corresponde a un estudio observacional, retrospectiva y transversal, ya que a fin de determinar el nivel de riesgo de sufrir feminicidio, se hace uso de datos obtenidos de fichas de registros que buscan medir variables relacionados a la mortalidad de las mujeres por casos de feminicidio, en un periodo de tiempo específico. Se implementó un modelo de red neuronal de tipo backpropagation, explicando de forma detallada las diferentes fases llevadas a cabo: selección de variables relevantes y pre procesamiento de los datos, división de la muestra en un grupo de entrenamiento, validación y test, así como la evaluación del modelo de red neuronal artificial mediante la construcción e interpretación de la matriz de confusión. La eficacia de la Red Neuronal Artificial entrenada fue de 96.07, mientras precisión global del modelo de RNA propuesto en la etapa de implementación fue del 70%. (es_PE)
Tesis (es_PE)
application/pdf
spa (es_PE)
Universidad Nacional de San Cristóbal de Huamanga (es_PE)
info:eu-repo/semantics/openAccess (en_US)
https://creativecommons.org/licenses/by/4.0/ (*)
Universidad Nacional de San Cristóbal de Huamanga (es_PE)
Repositorio Institucional - UNSCH (es_PE)
Redes neuronales (es_PE)
Valoración de riesgo (es_PE)
Backpropagation (es_PE)
Eficacia (es_PE)
Feminicidio (es_PE)
"Aplicación de las redes neuronales artificiales en la evaluación del riesgo de feminicidio, Perú, 2020" (es_PE)
info:eu-repo/semantics/bachelorThesis (en_US)
Universidad Nacional de San Cristóbal de Huamanga. Facultad de Ingeniería de Minas, Geología y Civil
Ingeniería de Sistemas
Título profesional
Ingeniero de Sistemas
PE
https://purl.org/pe-repo/ocde/ford#1.02.01
https://purl.org/pe-repo/renati/level#tituloProfesional
42713757
https://orcid.org/0000-0001-8078-755X
47938946
612076
Porras Flores, Efraín Elías
Terraza Huamán, Edem Jerson
Lezama Cuellar, Christian
https://purl.org/pe-repo/renati/type#tesis
Pública



This item is licensed under a Creative Commons License Creative Commons