Bibliographic citations
Barrantes, R., (2023). Análisis de calidad de traducción de dos traductores automáticos utilizados en un estudio de traducción en Lima, 2023 [Tesis, Universidad Femenina del Sagrado Corazón]. http://hdl.handle.net/20.500.11955/1308
Barrantes, R., Análisis de calidad de traducción de dos traductores automáticos utilizados en un estudio de traducción en Lima, 2023 [Tesis]. PE: Universidad Femenina del Sagrado Corazón; 2023. http://hdl.handle.net/20.500.11955/1308
@misc{renati/973713,
title = "Análisis de calidad de traducción de dos traductores automáticos utilizados en un estudio de traducción en Lima, 2023",
author = "Barrantes Rojas, Roxana Jazmín",
publisher = "Universidad Femenina del Sagrado Corazón",
year = "2023"
}
This study focused on evaluating the quality of machine translation by analyzing two machine translators using the previously established SAE J2450 evaluation metric. The study chose a quantitative, exploratory approach and was performed using an exploratory cross-sectional study design in Lima, Peru. The sample included two machine translation programs, DeepL and Yandex, and a fragment of a technical document from the automotive field was submitted on these platforms. After the evaluation of both machine translators, the average quality of their translations was found to be moderately low, with a score of 74.50 %. This was largely due to the significant presence of terminological and syntactic errors. Likewise, the quality score for DeepL was 72.39 %, while Yandex reached 76.62 %. In both cases, the translation quality was moderately low, with terminology errors being the most frequent. Finally, to improve the quality in translations, the intervention of a professional translator who can correct and enhance possible errors identified during the machine translation process is recommended.
This item is licensed under a Creative Commons License