Look-up in Google Scholar
Title: Modelo para la predicción del consumo de agua potable mediante redes neuronales artificiales en la ciudad de Iquitos
OCDE field: https://purl.org/pe-repo/ocde/ford#2.02.04
Issue Date: 2023
Institution: Universidad Nacional de la Amazonía Peruana
Abstract: The research work addresses the problem of water supply management in the city of Iquitos, where the question arises: Can an Artificial Neural Network model based on relevant historical data improve the prediction of the distributed volume of drinking water in the City of Iquitos?, to answer this question, the general objective of implementing an Artificial Neural Network model based on relevant historical data and evaluating its ability to accurately predict the distributed volume of drinking water in the City of Iquitos was raised. The methodology used was of the applied type, with a quantitative approach, the sample corresponded to the historical data of distributed volume of drinking water during the last six years. The results showed that the Artificial Neural Network model was able to accurately predict the distributed volume of drinking water in the city, identifying the maximum temperature, the minimum temperature, and the population as significant variables for the prediction of drinking water consumption. The implementation of this model can be useful for the management of water supply in the city and for future research in the field.

El trabajo de investigación aborda la problemática de la gestión del suministro de agua en la ciudad de Iquitos, en donde se plantea la pregunta ¿Puede un modelo de Red Neuronal Artificial basado en datos históricos relevantes mejorar la predicción del volumen distribuido de agua potable en la Ciudad de Iquitos?, para dar respuesta a esta pregunta, se planteó el objetivo general de implementar un modelo de Red Neuronal Artificial basado en datos históricos relevantes y evaluar su capacidad para predecir con precisión el volumen distribuido de agua potable en la Ciudad de Iquitos. La metodología utilizada fue de tipo aplicada, con un enfoque cuantitativo, la muestra correspondió a los datos históricos de volumen distribuido de agua potable durante los últimos seis años. Los resultados mostraron que el modelo de Red Neuronal Artificial fue capaz de predecir con precisión el volumen distribuido de agua potable en la ciudad, identificando la temperatura máxima, la temperatura mínima y la población como variables significativas para la predicción del consumo de agua potable. La implementación de este modelo puede ser útil para la gestión del suministro de agua en la ciudad y para futuras investigaciones en el campo.
Discipline: Maestría en Ingeniería de Sistemas con Mención en Gerencia de la Información y Gestión de Software
Grade or title grantor: Universidad Nacional de la Amazonía Peruana. Escuela de Postgrado
Grade or title: Maestro(a) en Ingeniería de Sistemas con Mención en Gerencia de la Información y Gestión de Software
Juror: Reategui Pezo, Alejandro; Ramírez Villacorta, Jimmy Max; Arévalo Jesús, Christian Alfredo
Register date: 13-Sep-2023



This item is licensed under a Creative Commons License Creative Commons