Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Beteta, M., (2024). Solución tecnológica para la prevención de la delincuencia en Los Olivos [Tesis, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/676412
Beteta, M., Solución tecnológica para la prevención de la delincuencia en Los Olivos [Tesis]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2024. http://hdl.handle.net/10757/676412
@misc{renati/953702,
title = "Solución tecnológica para la prevención de la delincuencia en Los Olivos",
author = "Beteta Rodriguez, Matias Amir",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2024"
}
Title: Solución tecnológica para la prevención de la delincuencia en Los Olivos
Other Titles: Technological Solution for Crime Prevention in Los Olivos
Authors(s): Beteta Rodriguez, Matias Amir
Advisor(s): Mansilla Lopez, Juan Pablo Jesus
Keywords: Seguridad ciudadana; Delincuencia; Aprendizaje automático; Algoritmo bayesiano; Citizen Security; Crime; Machine Learning; Naive Bayes
OCDE field: https://purl.org/pe-repo/ocde/ford#2.02.04; https://purl.org/pe-repo/ocde/ford#2.00.00
Issue Date: 24-Jul-2024
Institution: Universidad Peruana de Ciencias Aplicadas (UPC)
Abstract: Esta investigación propone una solución tecnológica de seguridad ciudadana y prevención del delito basada en “machine learning” en el distrito de Los Olivos, que alerta si la zona en la que se encuentra un ciudadano es insegura, mostrando una probabilidad del nivel de inseguridad de cada zona, haciendo más visibles las zonas con mayor nivel de inseguridad; esto se logró utilizando un modelo de machine Learning, con el algoritmo “Naive Bayes” exactamente. Para la validación se utilizó una muestra de 108 usuarios, con quienes se probó la solución tecnológica utilizando un escenario de prueba. En este sentido, se elaboró un cuestionario para evaluar la percepción de los usuarios con un nivel de aceptación del 93,5%. Por otro lado, al utilizar el algoritmo “Naive Bayes” se asegura obtener una mejor "Precisión" y distribución por categoría en comparación con los siguientes algoritmos: “Classification Forest”, “Catboost Classifier” y “KNN” respectivamente. Por lo tanto, fue con el uso del algoritmo “Naive Bayes” que se llevó a cabo la solución tecnológica. La solución tecnológica propuesta es innovadora para el Perú porque utiliza el aprendizaje automático como tecnología. Además, esta, podría ser replicada en cualquier otro distrito de Lima Metropolitana.
This research proposes a technological solution for citizen security and crime prevention based on machine learning in the district of Los Olivos, which alerts if the area in which a citizen is located is unsafe, showing a probability of the level of insecurity in each area, making more visible the areas with the highest level of insecurity; this was achieved using a machine Learning model, with the Naive Bayes algorithm exactly. A sample of 108 users was used for validation, with whom the technological solution was tested using a test scenario. In this sense, a questionnaire was elaborated to evaluate the perception of the users with an acceptance level of 93.5%. On the other hand, when using the Naive Bayes algorithm is ensured to obtain a better “Accuracy” and distribution by category in comparison with the following algorithms: Classification Forest, Catboost Classifier and KNN respectively. Therefore, it was with the use of one the Naive Bayes algorithm that the technological solution was carried out. The technological solution proposed is innovative for Peru because it uses machine learning as a technology. In addition, this solution could be replicated in any other district of Metropolitan Lima.
This research proposes a technological solution for citizen security and crime prevention based on machine learning in the district of Los Olivos, which alerts if the area in which a citizen is located is unsafe, showing a probability of the level of insecurity in each area, making more visible the areas with the highest level of insecurity; this was achieved using a machine Learning model, with the Naive Bayes algorithm exactly. A sample of 108 users was used for validation, with whom the technological solution was tested using a test scenario. In this sense, a questionnaire was elaborated to evaluate the perception of the users with an acceptance level of 93.5%. On the other hand, when using the Naive Bayes algorithm is ensured to obtain a better “Accuracy” and distribution by category in comparison with the following algorithms: Classification Forest, Catboost Classifier and KNN respectively. Therefore, it was with the use of one the Naive Bayes algorithm that the technological solution was carried out. The technological solution proposed is innovative for Peru because it uses machine learning as a technology. In addition, this solution could be replicated in any other district of Metropolitan Lima.
Link to repository: http://hdl.handle.net/10757/676412
Discipline: Ingeniería de Sistemas de Información
Grade or title grantor: Universidad Peruana de Ciencias Aplicadas (UPC). Facultad de Ingeniería
Grade or title: Ingeniero de sistemas de información
Juror: Burga Durango, Daniel Wilfredo; Subauste Oliden, Daniel Alejandro; Coronado Gutiérrez, Jaime Juniors
Register date: 13-Nov-2024
This item is licensed under a Creative Commons License