Look-up in Google Scholar
Title: Predicción del tipo de parto en el departamento de ginecología-obstetricia del Hospital Santa Rosa mediante Machine Learning
Advisor(s): Calderón Niquín, Marks
OCDE field: https://purl.org/pe-repo/ocde/ford#5.02.04; https://purl.org/pe-repo/ocde/ford#2.11.04
Issue Date: 2023
Institution: Universidad ESAN
Abstract: En el presente trabajo, se uso Machine Learning en el ámbito de aprendizaje supervizado. para predecir los tipos de partos de las gestante atendidas en el Hospital Santa Rosa, buscando optimizar los recursos de la institución tanto material como humano. Para la creación del Modelo se recopiló toda la información existente en el hospital santa rosa y el ministerio de salud (Minsa) mediante un cruce de información, luego de la limpieza de datos, se utilizo el 80% para el aprendizaje y uN 20% para la para corroborar la predicción. El modelo predominante para nuestro trabajo fue el Árbol de decisión, donde se identifico la variable y ( tipos de partos existentes) y las variables x ( diagnosticas por lo que existe complicaciones durante el parto). con lo cual el modelo se pudo recrear.
Discipline: Ingeniería Industrial y Comercial; Ingeniería de Tecnologías de Información y Sistemas
Grade or title grantor: Universidad ESAN. Facultad de Ingeniería
Grade or title: Ingeniero Industrial y Comercial; Ingeniero de Tecnologías de Información y Sistemas
Juror: Carpio Gallegos, Javier Del; Castro Gamarra, Giannina
Register date: 11-Apr-2024



This item is licensed under a Creative Commons License Creative Commons