Look-up in Google Scholar
Full metadata record
Calderón Niquín, Marks
Puente Ríos, Alonso Augusto
2021-07-02T00:16:32Z
2021-07-02T00:16:32Z
2021
https://hdl.handle.net/20.500.12640/2316
Desde la aparición del crowdfunding, muchos emprendedores han presentado sus proyectos al público para conseguir su financiamiento. Durante el período 2009-2019, el 37% de proyectos de Kickstarter, una de las plataformas de financiamiento colectivo más populares, alcanzó ser financiado exitosamente. Se han estado utilizando distintas metodologías de Inteligencia Artificial, considerando todas las categorías en esta plataforma para crear modelos predictivos. Sin embargo, este ratio solo alcanza el 20% para Tecnología. El objetivo de esta investigación fue predecir el estado de financiamiento de proyectos de tecnología en Kickstarter mediante un modelo de Aprendizaje Profundo Multimodal. Siguiendo la metodología CRISP-DM, se implementó un modelo ensamblado de otros modelos de Aprendizaje Profundo para 3 modalidades: un Perceptrón Multicapa para la Metainformación, una Red Neuronal Convolucional para la descripción y un modelo LSTM Bidireccional para los comentarios de los patrocinadores. Se utilizó información de más de 27 mil proyectos de tecnología en Kickstarter entre 2009 y 2019. El modelo propuesto superó a los modelos de la base de línea en cada métrica, alcanzando un valor de 93% de AUC, su mejor desempeño. Se logró resolver el problema bajo una nueva perspectiva, además de aportar mayor conocimiento y un prototipo para apoyar a los emprendedores. (es_ES)
application/pdf (es_ES)
spa (es_ES)
Universidad ESAN (es_ES)
info:eu-repo/semantics/openAccess (es_ES)
https://creativecommons.org/licenses/by-nc-sa/2.5/pe/ (*)
Financiamiento de proyectos (es_ES)
Sitios web (es_ES)
Redes neuronales (es_ES)
Espíritu de empresa (es_ES)
Predicción del estado de financiamiento de proyectos de tecnología en sitio web de crowdfunding Kickstarter mediante modelo de Aprendizaje Profundo Multimodal (es_ES)
info:eu-repo/semantics/bachelorThesis (es_ES)
Universidad ESAN. Facultad de Ingeniería (es_ES)
Ingeniería de Tecnologías de Información y Sistemas (es_ES)
Ingeniero de Tecnologías de Información y Sistemas (es_ES)
PE (es_ES)
https://purl.org/pe-repo/ocde/ford#2.02.04 (es_ES)
https://purl.org/pe-repo/renati/level#tituloProfesional (es_ES)
70263095
https://orcid.org/0000-0002-5440-3978 (es_ES)
70003830
613066 (es_ES)
Ballón Álvarez, Eber Joseph
Mamani Ticona, Wilfredo
Shiguihara Juárez, Pedro Nelson
https://purl.org/pe-repo/renati/type#tesis (es_ES)
Privada asociativa



This item is licensed under a Creative Commons License Creative Commons