Look-up in Google Scholar
Full metadata record
Saboya Ríos, Nemias
Baldoceda Ramírez, Anthony Jose
Mamani Ccallohuari, Hector Armando
2021-02-09T20:29:12Z
2021-02-09T20:29:12Z
2020-10-09
http://repositorio.upeu.edu.pe/handle/20.500.12840/4202
La presente investigación tiene como principal objetivo determinar el nivel de eficacia del modelo de aprendizaje supervisado para el pronóstico de la deserción de estudiantes de la Facultad de Ingeniería y Arquitectura de la Universidad Peruana Unión – Lima. El estudio fue de tipo aplicada y se utilizó el método de CRISP-DM para el desarrollo del modelo. Los datos fueron extraídos del sistema académico de la Universidad Peruana Unión considerando el período 2009-2019. Estos fueron clasificados en factores personales, financieros y académicos, siendo un total de 3161 registros. La metodología del estudio contó con 6 etapas: Comprensión del negocio, comprensión de los datos, preparación de los datos, diseño del modelo, evaluación del modelo y la implementación del modelo. A partir del análisis de las 16 variables iniciales y la transformación realizada, se obtuvo un diccionario de datos con 26 variables. Con este diccionario de datos se procedió a la identificación de las técnicas de modelos de aprendizaje para cada carrera, del cual se obtuvo que Decision Tree, Naive Bayes, KNN y Random Forest, fueron los que se adaptaron mejor a la realidad de cada carrera. Al evaluar estos modelos con las métricas “ratio de verdaderos positivos” (TPR) y “balanced accuracy”, se obtuvo que el modelo eficaz para cada carrera fue: Ing. Sistemas (Random Forest), Ing. Civil (Decision Tree), Ing. Alimentos (KNN), Ing. Ambiental (KNN) y Arquitectura (KNN). Finalmente, estos modelos fueron implementados en un API REST, en el cual se demostró su funcionamiento para realizar futuras predicciones de deserción estudiantes, sin necesidad de volver a entrenar el modelo. (en_ES)
application/pdf (en_ES)
spa
Universidad Peruana Unión (en_ES)
info:eu-repo/semantics/openAccess (en_ES)
Attribution 3.0 Spain (*)
http://creativecommons.org/licenses/by/3.0/es/ (*)
Modelo predictivo (en_ES)
Machine learning (en_ES)
Desercion estudiantil (en_ES)
XGBOOST (en_ES)
Árbol de clasificación (en_ES)
Modelo de aprendizaje supervisado para pronóstico de la deserción de estudiantes de la Facultad de Ingeniería y Arquitectura de la Universidad Peruana Unión - Lima (en_ES)
info:eu-repo/semantics/bachelorThesis (en_ES)
Universidad Peruana Unión. Facultad de Ingeniería y Arquitectura (en_ES)
Ingeniería de Sistemas (en_ES)
Ingeniero de Sistemas (en_ES)
PE (en_ES)
PE
http://purl.org/pe-repo/ocde/ford#2.02.04 (en_ES)
http://purl.org/pe-repo/renati/nivel#tituloProfesional (en_ES)
42001721
https://orcid.org/0000-0002-7166-2197
75249644
77270544
612076 (en_ES)
Acuña Salinas, Erika Inés
Alvizuri Llerena, Geraldine Verónica
Huanca Torres, Fredy Abel
Paucar Curasma, Herminio
Saboya Rios, Nemias
http://purl.org/pe-repo/renati/type#tesis (en_ES)
Privada asociativa



This item is licensed under a Creative Commons License Creative Commons