Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Cipriano, D., Melo, Y., Zambrano, M. (2022). A machine learning approach to find the determinants of Peruvian coca illegal crops [Universidad Continental]. https://hdl.handle.net/20.500.12394/12790
Cipriano, D., Melo, Y., Zambrano, M. A machine learning approach to find the determinants of Peruvian coca illegal crops []. PE: Universidad Continental; 2022. https://hdl.handle.net/20.500.12394/12790
@misc{renati/911840,
title = "A machine learning approach to find the determinants of Peruvian coca illegal crops",
author = "Zambrano Laureano, María Isabel",
publisher = "Universidad Continental",
year = "2022"
}
Full metadata record
Ruiz Parejas, Ruben Angel (es_ES)
Cipriano Romero, Débora Belén (es_ES)
Melo Estrella, Yadira Gina (es_ES)
Zambrano Laureano, María Isabel (es_ES)
2023-04-17T22:06:05Z
2023-04-17T22:06:05Z
2022
Cipriano, D., Melo, Y. y Zambrano, M. (2022). A machine learning approach to find the determinants of Peruvian coca illegal crops. Tesis para optar el título profesional de Ingeniera de Sistemas e Informática, Escuela Académico Profesional de Ingeniería de Sistemas e Informática, Universidad Continental, Huancayo, Perú. (es_ES)
https://hdl.handle.net/20.500.12394/12790
The current study analyzed the determinants of the Peruvian coca illegal plantations in the period 2003-2019. Hence, the DEVIDA database variables were gathered at first. Then, a machine learning-based technique is employed to select the most relevant variables for the study. That technique, Lasso, selected as accurate variables eradication of coca plantations and pasta base. Both OLS and VAR are employed to analyze the relevance of the selected variables. OLS finds that eradication was negatively related to the dependent variable. Nonetheless, pb confiscation had a positive relationship with illegal coca crops. Furthermore, VAR encounters that only pb confiscation affected the dependent variable. Supplementary tests are carried to ensure the accuracy of the results. In consequence, it is concluded that eradication policies by themselves were not enough to discourage the coca plantations. Farmers should get instruction about alternative crops and financial help. Furthermore, it has been claimed that pb confiscation generates scarcity of the drug, which elevates its price. Thus, coca farmers are more motivated to plant coca because of the higher prices. Therefore, as long as the international demand, which is disposed to pay high prices, the coca illegal crops and its illicit products will exist. (es_ES)
application/pdf (es_ES)
p. 127-136 (es_ES)
eng (es_ES)
Universidad Continental (es_ES)
https://growingscience.com/beta/dsl/5214-a-machine-learning-approach-to-find-the-determinants-of-peruvian-coca-illegal-crops.html (es_ES)
info:eu-repo/semantics/openAccess (es_ES)
https://creativecommons.org/licenses/by/4.0/ (es_ES)
Universidad Continental (es_ES)
Repositorio Institucional - Continental (es_ES)
Coca (es_ES)
Diseño de máquinas (es_ES)
Inteligencia artificial (es_ES)
A machine learning approach to find the determinants of Peruvian coca illegal crops (es_ES)
info:eu-repo/semantics/bachelorThesis (es_ES)
Attribution 4.0 International (CC BY 4.0) (es_ES)
Universidad Continental. Facultad de Ingeniería. (es_ES)
Ingeniería de Sistemas e Informática (es_ES)
Ingeniera de Sistemas e Informática (es_ES)
PE (es_ES)
http://purl.org/pe-repo/ocde/ford#2.02.04 (es_ES)
Pregrado presencial regular (es_ES)
https://purl.org/pe-repo/renati/level#tituloProfesional (es_ES)
41935833
https://orcid.org/0000-0002-5159-3307 (es_ES)
70118226
74043218
71510945
612156 (es_ES)
https://purl.org/pe-repo/renati/type#tesis (es_ES)
Privada societaria
info:eu-repo/semantics/publishedVersion (es_ES)
This item is licensed under a Creative Commons License