Look-up in Google Scholar
Title: Algoritmo para escribir un número par que termina en ocho como la suma de dos números primos
Advisor(s): Cerna Maguiña, Bibiano Martín
Issue Date: 14-Jan-2020
Institution: Universidad Nacional Santiago Antúnez de Mayolo
Abstract: Los números primos son tan importantes por constituir base fundamental de la teoría de números y motivados por uno de los problemas matemáticos más antiguos que aun hasta la fecha en su totalidad no ha sido resuelta, como es la Conjetura de GOLDBACH, el presente trabajo de investigación tiene como objetivo principal “elaborar un algoritmo que nos permite expresar a un número natural par que termina en ocho como la suma de dos números primos”. Para ello usamos las funciones generadoras: 𝑓1(𝑘) = 10𝑘 + 1 𝑓2(𝑘) = 10𝑘 + 3 𝑓3(𝑘) = 10𝑘 + 7 𝑓4(𝑘) = 10𝑘 + 9 donde k es un número natural. Para luego aplicando los métodos científicos como es inductivo-deductivo y el análisis se establece el algoritmo: si 𝑚 = 2𝑘 es un número natural par que termina en ocho, se presenta los siguientes casos: 𝑚 = (10𝑘1 + 7) + (10𝑘2 + 1) 𝑚 = (10𝑘1 + 9) + (10𝑘2 + 9) 𝑚 = 5 + (10𝑘2 + 3) pero con ciertas restricciones que en cada caso requiere. Por consiguiente, aplicando dichos algoritmos se obtiene los resultados planteados en los objetivos del presente trabajo, tal como se demuestran en sus capítulos subsiguientes. Por lo tanto, existen números pares que terminan en ocho y son expresados como la suma de dos números primos. Asimismo, usando estas funciones obtenemos un teorema que nos asegura que las imágenes de estas funciones están contenidas en el conjunto de los números primos
Discipline: Matemática
Grade or title grantor: Universidad Nacional Santiago Antúnez de Mayolo. Facultad de Ciencias
Grade or title: Licenciado en Matemática
Register date: 22-Jul-2020



This item is licensed under a Creative Commons License Creative Commons