Look-up in Google Scholar
Full metadata record
Huanca Cayo, Eber
Bernedo Flores, Liz Sandra
2024-04-02T17:43:19Z
2024-04-02T17:43:19Z
2024
1080818
https://hdl.handle.net/20.500.12590/18114
El Perú está ubicado en el 2° lugar como productor de conchas de abanico a nivel mundial según el Centro de Investigación de Economía y Negocios Globales (CIEN), dinamizando la economía en el sector acuícola, el cual viene experimentando un crecimiento constante en relación a la pesquería. No obstante, los procesos de muestreo siguen siendo artesanales, comprometiendo la salud de las personas que realizan esta actividad. Frente a esta realidad la presente tesis busca aportar a la solución de esta problemática, aplicando técnicas de deep learning y computer visión para la segmentación de conchas de abanico en un ambiente no extractivo de recursos hidrobiológicos. Para lo cual se aplicó una metodología, la cual inicia con la recolección de imágenes y construcción de una base de datos de conchas de abanico, realizando luego un pre-procesamiento y selección de imágenes para el etiquetado, culminando con la etapa de segmentación con la aplicación de los modelos SUIM-Net y YOLOvo8. Los resultados obtenidos se validaron a partir de las métricas mAP y F1-Score, obteniendo hasta un 79% de precisión. Considerando variables no controladas y en constante cambio, como la turbidez marina, la poca visibilidad bajo el agua, condiciones climatológicas o el terreno del fondo marino que puede ser rocoso, arenoso o presentar exceso de algas.
Tesis de maestría
application/pdf
spa
Universidad Católica San Pablo
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/4.0/
Deep learning
Computer visión
Segmentación
Concha de abanico
Acuicultura
Segmentación de conchas de abanico para el muestreo no extractivo de recursos hidrobiológicos basado en Deep Learning y Computer Vision
info:eu-repo/semantics/masterThesis
Universidad Católica San Pablo. Departamento de Ingeniería Eléctrica y Electrónica
Ingeniería Electrónica y de Telecomunicaciones
Maestría
Maestro en Internet de las Cosas
PE
http://purl.org/pe-repo/ocde/ford#2.02.01
Escuela Profesional Ingeniería Electrónica y de Telecomunicaciones
https://purl.org/pe-repo/renati/level#maestro
40663480
https://orcid.org/0000-0003-4465-9707
46019552
712117
Ludeña Choez, Jimmy Diestin
Barrios Aranibar, Dennis
https://purl.org/pe-repo/renati/type#tesis
Privada asociativa
info:eu-repo/semantics/publishedVersion



This item is licensed under a Creative Commons License Creative Commons