Look-up in Google Scholar
Title: Reconocimiento del movimiento ocular mediante aprendizaje máquina para interacción con el computador para personas con parálisis física empleando tratamiento de imágenes
Advisor(s): Sotomayor Polar, Manuel
OCDE field: http://purl.org/pe-repo/ocde/ford#2.02.01
Issue Date: 2021
Institution: Universidad Católica San Pablo
Abstract: Se sabe que las personas que padecen cuadriplejía tienen limitaciones físicas tales como el movimiento de brazos, piernas, torso o cuello, por tanto es evidente que manipular un ordenador se convierte en una tarea complicada. Además dependiendo de la severidad de este padecimiento muchos necesitan la asistencia de terceros para poder manipular ordenadores. Por ejemplo limita algunas actividades de entretenimiento y comunicación a través de las redes sociales. La presente investigación propone reconocer el movimiento ocular mediante el tratamiento de imágenes y aprendizaje máquina empleando Máquina de Vector Soporte (SVM), con ayuda de componentes simples como lo es un computador de usuario y una cámara. De esta manera la persona con inmovilidad de su cuerpo podría interactuar controlando el movimiento del mouse mediante el movimiento ocular, logrando interactuar a través de una computadora aprovechando algunos de sus beneficios. Los resultados experimentales han demostrado que el uso de una de la herramienta de SVM mejora la clasificación en las imágenes del movimiento ocular. El uso de filtros shobel en la extracción de características muestran mejoras en comparación a los filtros Canny. El uso de SVM con kernel Gaussiano tienen mejoras en un 20 % en los resultados que un kernel lineal.
Discipline: Ingeniería Electrónica y de Telecomunicaciones
Grade or title grantor: Universidad Católica San Pablo. Departamento de Ingeniería Eléctrica y Electrónica
Grade or title: Ingeniero Electrónico y de Telecomunicaciones
Juror: Efraín Tito Mayhua Lopez; Raquel Esperanza Patiño Escarcina
Register date: 19-Oct-2021



This item is licensed under a Creative Commons License Creative Commons