Look-up in Google Scholar
Title: Multimodal unconstrained people recognition with face and ear images using deep learning
Advisor(s): Camara Chavez, Guillermo
OCDE field: http://purl.org/pe-repo/ocde/ford#1.02.01
Issue Date: 2023
Institution: Universidad Católica San pablo
Abstract: Multibiometric systems rely on the idea of combining multiple biometric methods into one single process that leads to a more reliable and accurate system. The combination of two different biometric traits such as face and ear results in an advantageous and complementary process when using 2D images taken under uncontrolled conditions. In this work, we investigate several approaches to fuse information from the face and ear images to recognize people in a more accurate manner than using each method separately. We leverage the research maturity level of the face recognition field to build, first a truly multimodal database of ear and face images called VGGFace-Ear dataset, second a model that can describe ear images with high generalization called VGGEar model, and finally explore fusion strategies at two different levels in a common recognition pipeline, feature and score levels. Experiments on the UERC dataset have shown, first of all, an improvement of around 7% compared to the state-of-the-art methods in the ear recognition field. Second, fusing information from the face and ear images increases recognition rates from 79% and 82%, in the unimodal face and ear recognition respectively, to 94% recognition rate using the Rank-1 metric.
Discipline: Ciencia de la Computación
Grade or title grantor: Universidad Católica San Pablo. Departamento de Ciencia de la Computación
Grade or title: Maestro en Ciencia de la Computación
Juror: Ochoa Luna, José Eduardo; Mora Colque, Rensso Victor Hugo; Cayllahua Cahuina, Edward Jorge Yuri; Menotti, David
Register date: 15-Nov-2023



This item is licensed under a Creative Commons License Creative Commons