Buscar en Google Scholar
Registro completo de metadatos
Gomez Nieto, Erick Mauricio
Diaz Espino, Dany Mauro
2022-09-28T16:16:39Z
2022-09-28T16:16:39Z
2022
1075143
https://hdl.handle.net/20.500.12590/17280
En la actualidad existen muchos avances en el área de aprendizaje de máquina. A veces los modelos usados para realizar una determinada tarea no proporcionan los mejores resultados. Una alternativa de solución a este problema es el uso de ensambles de clasificadores, ya que la decisión final estará basada en el conjunto de probabilidades generadas por varios modelos. De esta forma, aunque uno de los clasificadores falle, los resultados tendrán cierto grado de confiabilidad si es que los demás clasificadores aciertan. Con este enfoque también surge la demanda por herramientas que permitan realizar un análisis detallado de cada clasificador perteneciente al ensamble. Es por este motivo que la presente tesis propone el desarrollo de una herramienta de generación y comparación de ensambles óptimos en términos de rendimiento. La herramienta propuesta se apoya en técnicas de visualización para realizar dos tareas principales: proporcionar un análisis detallado de cada clasificador y mostrar las métricas asociadas a cada clasificador para ayudar al usuario en la toma de decisiones. (es_PE)
Tesis (es_PE)
application/pdf (es_PE)
spa (es_PE)
Universidad Católica San Pablo (es_PE)
info:eu-repo/semantics/openAccess (es_PE)
https://creativecommons.org/licenses/by/4.0/ (es_PE)
Universidad Católica San Pablo (es_PE)
Repositorio Institucional - UCSP (es_PE)
Ensamble de clasificadores (es_PE)
Visualización interactiva (es_PE)
Ciencia de datos (es_PE)
Una herramienta de visualización interactiva para la generación de ensambles óptimos de clasificadores (es_PE)
info:eu-repo/semantics/bachelorThesis (es_PE)
Universidad Católica San Pablo. Departamento de Ciencia de la Computación (es_PE)
Ciencia de la Computación (es_PE)
Título Profesional (es_PE)
Licenciado en Ciencia de la Computación (es_PE)
PE (es_PE)
http://purl.org/pe-repo/ocde/ford#1.02.01 (es_PE)
Escuela Profesional de Ciencia de la Computación (es_PE)
https://purl.org/pe-repo/renati/level#tituloProfesional (es_PE)
43351822
https://orcid.org/0000-0001-6123-6496 (es_PE)
70267452
611016 (es_PE)
Rensso Victor Hugo Mora Colque (es_PE)
Eddie Rogger Peralta Aranibar (es_PE)
https://purl.org/pe-repo/renati/type#tesis (es_PE)
Privada asociativa
info:eu-repo/semantics/publishedVersion (es_PE)



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons