Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Quispe, G., (2019). Surveillance video summarization based on trajectory rarity measure [Trabajo de investigación, Universidad Católica San Pablo]. https://hdl.handle.net/20.500.12590/16147
Quispe, G., Surveillance video summarization based on trajectory rarity measure [Trabajo de investigación]. PE: Universidad Católica San Pablo; 2019. https://hdl.handle.net/20.500.12590/16147
@mastersthesis{renati/781929,
title = "Surveillance video summarization based on trajectory rarity measure",
author = "Quispe Torres, Gerar Francis",
publisher = "Universidad Católica San Pablo",
year = "2019"
}
Full metadata record
Mora Colque, Rensso Victor Hugo
Quispe Torres, Gerar Francis
2019-12-10T16:14:19Z
2019-12-10T16:14:19Z
2019
1072066
https://hdl.handle.net/20.500.12590/16147
The dynamic video summarization of surveillance videos has several critical applications, mainly due to the wide availability of digital cameras in environments such as airports, train and bus stations, shopping centers, stadiums, buildings, schools, hospitals, roads, among others. This study presents an approach for the generation of dynamic summary on surveillance video domain based on human trajectories. It has an emphasis on trajectory descriptors in conjunction with the unsupervised clustering method. Our approach contribute to existing literature concerning the combination of methods and objectives. We hypothesize that the clustering of trajectories permits to identify rare trajectories base on their morphology. The clustering as an output provides numerous subsets of trajectories or clusters and the number of elements of a specific cluster is used to determine their rarity. Those subsets with few components are rare while the others that have a high number of elements are considered ordinary; therefore, the implications of our study show that is possible to use unsupervised clustering for automatic detection of rare trajectories based on their morphology and with this information segment videos. We experimented with different sets of trajectories segmenting the rare videos from our ground truth. (es_PE)
Trabajo de investigación (es_PE)
application/pdf (es_PE)
eng (es_PE)
Universidad Católica San Pablo (es_PE)
info:eu-repo/semantics/openAccess (es_PE)
https://creativecommons.org/licenses/by/4.0/ (es_PE)
Universidad Católica San Pablo (es_PE)
Repositorio Institucional - UCSP (es_PE)
Morphology Trajectory Descriptor (es_PE)
Trajectory Feature Extraction (es_PE)
Dynamic Surveillance Video Summarization (es_PE)
Trajectory Clustering (es_PE)
Surveillance video summarization based on trajectory rarity measure (es_PE)
info:eu-repo/semantics/masterThesis (es_PE)
Universidad Católica San Pablo. Facultad de Ingeniería y Computación (es_PE)
Ciencia de la Computación (es_PE)
Maestría (es_PE)
Maestro en Ciencia de la Computación (es_PE)
PE (es_PE)
http://purl.org/pe-repo/ocde/ford#1.02.01 (es_PE)
Escuela Profesional de Ciencia de la Computación (es_PE)
Privada asociativa
This item is licensed under a Creative Commons License