Look-up in Google Scholar
Title: Desarrollo de un método de identificación de personas mediante el procesamiento de imágenes digitales de la impresión palmarias
OCDE field: https://purl.org/pe-repo/ocde/ford#2.02.04
Issue Date: 2022
Institution: Universidad Señor de Sipán
Abstract: Los métodos de identificación más comunes de reconocimiento de personas en la actualidad presentan problemas de detección, esto por las huellas dactilares que son borrosas por el trabajo, y a esto sumado que estos métodos están siendo vulnerados, hoy en día hacen necesario realizar nuevos métodos de identificación. El objetivo de esta investigación es: Desarrollar un método por medio de un análisis comparativo de los métodos de reconocimiento de las palmas de las manos con modelos producido por redes neuronales convolucionales, para resolver problemas de reconocimiento, la presente investigación se origina por el estudio realizado en las bases a la teoría científica, estado del arte, los problemas diversos existentes en la implementación de técnicas de reconocimiento de huellas palmarias, donde se encuentran métodos que son eficaces y estos pueden procesar los resultado rápidamente pero con problemas de identificación, por lo que, en este estudio se plantea desarrollar un análisis de comparación de seis métodos de reconocimiento de palmas de manos con procesamiento de imágenes, para conocer qué método tiene un mejor desempeño en la tarea de entrenamiento y reconocimiento de las huellas palmarias. Para realizar el trabajo de esta investigación se utilizaron las fotografías digitales de palmas de manos de 100 personas que fueron registradas de manera individual, como muestra para el desarrollo de la prueba de las 6 redes neuronales convolucionales seleccionadas las cuales son: la VGG16, VG19, ResNet50, MobileNetV2, Xception y DenseNet121. Además, se creó un propio protocolo de bioseguridad por encontrarnos en tiempos de pandemia y lineamientos de registro de imágenes para luego grabarlas de tal manera que pudieran procesarse por 06 de los métodos escogidos. Como parte de la evaluación de resultados se implementó un script con python donde se mide los indicadores como: Tiempo de respuesta, Precisión, Exactitud, Recall, Valor F. Al término de experimentar con 6 redes convoluciones se concluyó la red neuronal con mejores resultados para esta tarea fue la RestNet50 ya que su porcentaje de acuraccy fue de 99% y el más alto de los demás métodos.
Discipline: Ingeniería de Sistemas
Grade or title grantor: Universidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismo
Grade or title: Ingeniero de Sistemas
Juror: Ramos Moscol, Mario Fernando; Mejia Cabrera, Heber Ivan; Bravo Ruiz, Jaime Arturo
Register date: 8-Mar-2022



This item is licensed under a Creative Commons License Creative Commons