Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Espinoza, J., (2023). Optimización del sistema productor de vacío de refinería Conchán [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/27368
Espinoza, J., Optimización del sistema productor de vacío de refinería Conchán [Tesis]. PE: Universidad Nacional de Ingeniería; 2023. http://hdl.handle.net/20.500.14076/27368
@mastersthesis{renati/713075,
title = "Optimización del sistema productor de vacío de refinería Conchán",
author = "Espinoza Mejía, Julia Emilia",
publisher = "Universidad Nacional de Ingeniería",
year = "2023"
}
Title: Optimización del sistema productor de vacío de refinería Conchán
Authors(s): Espinoza Mejía, Julia Emilia
Advisor(s): Pilco Núñez, Alex Willy
Keywords: Destilación al vacío; Refinería de petróleo
OCDE field: http://purl.org/pe-repo/ocde/ford#2.04.02
Issue Date: 2023
Institution: Universidad Nacional de Ingeniería
Abstract: La destilación al vacío es considerada uno de los procesos más productivos, pero a la vez más crítico en una refinería de petróleo. En el Perú existen siete refinerías de petróleos que abastecen de productos combustibles a todo el país. La tercera más grande, es la Refinería Conchán. La Refinería Conchán actualmente cuenta con un sistema de vacío de una sola etapa que logra presiones de vacío de 2 a 2.5 psia y que limita la producción de asfaltos de baja penetrabilidad (10/20 y 20/30) los cuales requieren de altas temperaturas produciendo problemas de coquificación de las corrientes y perdidas de vacío por la generación de gases incondensables. Asimismo, este problema se ve reflejado en la incapacidad de pasar la prueba de la mancha para este tipo de asfaltos y limitaciones operativas para trabajar a distintos esquemas de carga. El presente trabajo de investigación plantea modificar el actual sistema de vacío de una etapa a dos etapas usando los eyectores disponibles en plantas y que están fuera de servicio, asimismo; se evalúa la inclusión de uno o dos aerorefrigerantes al sistema de agua de enfriamiento que actualmente trabaja con una torre de enfriamiento. Un total de quince alternativas son evaluadas para el sistema de enfriamiento y vacío. Las alternativas son simuladas en Aspen-HYSYS así como también se muestra el procedimiento de cálculo manual a distintas condiciones de operación. De las evaluaciones se concluye que la alternativa óptima para el sistema es la habilitación del eyector K-1A y K-2 en serie, con lo cual se mejora la presión de vacío de 2.0 psia (actual) a 1.021 psia. Asimismo, se recomienda la habilitación del aerorefrigerante E-11 al sistema de enfriamiento. Estas modificaciones al proceso generan ahorros por reducción del consumo de combustible en el horno de procesos H-2 por 107.2 MUS$/año con un TIR de 32.7% y PAYOUT de 3.4 años.
Vacuum distillation is considered one of the most productive processes, but at the same time the most critical in an oil refinery. In Peru there are seven oil refineries that supply fuel products to the entire country. The third largest is the Conchán Refinery. The Conchán Refinery currently has a single stage vacuum system that achieves vacuum pressures of 2 to 2.5 psia and limits the production of low penetrability asphalts (10/20 and 20/30) which require high temperatures producing current coking problems and vacuum losses due to the generation of non-condensable gases. Likewise, this problem is reflected in the inability to pass the stain test for this type of asphalt and operational limitations to work with different load schemes. The present research work proposes to modify the current vacuum system from one stage to two stages using the ejectors available in plant and the ones that are also out of service; likewise, the inclusion of one or two air-coolers to the cooling water system that currently works with a cooling tower is evaluated. A total of fifteen alternatives are evaluated for the cooling and vacuum system. The alternatives are simulated in Aspen-HYSYS as well as the manual calculation procedure for different operating conditions is shown. From the evaluations it is concluded that the optimal alternative for the system is the enabling of the K-1A and K-2 ejector in series, which improves the vacuum pressure from 2.0 psia (current) to 1.021 psia. In addition, it is recommended to enable the E-11 air-cooler to the cooling system. These modifications to the process generate savings by reducing fuel consumption in the H-2 process furnace for 107.2 MUS$/year with an IRR of 32.7% and PAYOUT of 3.4 years.
Vacuum distillation is considered one of the most productive processes, but at the same time the most critical in an oil refinery. In Peru there are seven oil refineries that supply fuel products to the entire country. The third largest is the Conchán Refinery. The Conchán Refinery currently has a single stage vacuum system that achieves vacuum pressures of 2 to 2.5 psia and limits the production of low penetrability asphalts (10/20 and 20/30) which require high temperatures producing current coking problems and vacuum losses due to the generation of non-condensable gases. Likewise, this problem is reflected in the inability to pass the stain test for this type of asphalt and operational limitations to work with different load schemes. The present research work proposes to modify the current vacuum system from one stage to two stages using the ejectors available in plant and the ones that are also out of service; likewise, the inclusion of one or two air-coolers to the cooling water system that currently works with a cooling tower is evaluated. A total of fifteen alternatives are evaluated for the cooling and vacuum system. The alternatives are simulated in Aspen-HYSYS as well as the manual calculation procedure for different operating conditions is shown. From the evaluations it is concluded that the optimal alternative for the system is the enabling of the K-1A and K-2 ejector in series, which improves the vacuum pressure from 2.0 psia (current) to 1.021 psia. In addition, it is recommended to enable the E-11 air-cooler to the cooling system. These modifications to the process generate savings by reducing fuel consumption in the H-2 process furnace for 107.2 MUS$/year with an IRR of 32.7% and PAYOUT of 3.4 years.
Link to repository: http://hdl.handle.net/20.500.14076/27368
Discipline: Maestría en Ingeniería de Procesos
Grade or title grantor: Universidad Nacional de Ingeniería. Facultad de Ingeniería Química y Textil. Unidad de Posgrado
Grade or title: Maestro en Ingeniería de Procesos
Juror: Collado Domínguez, Emerson Alcides; Huamán Pérez, Fernando; Porras Sosa, Emilio Fermín; Huayta Socantaype, Fredy Vicente
Register date: 31-Jul-2024
This item is licensed under a Creative Commons License